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ABSTRACT 

Geoid undulation computations were  carried out at 39 laser stations 
distributed around the world using a combination of terrestrial gravity 
data within a cap of radius 2"  and a potential coefficient set (Rapp and 
Crue, 1986b) up to degree 180. The traditional methods of Stokes' and 
Meissl's modification together with the new Molodenskii's method and the  
modified S jijberg's method were applied. Performing numerical tests 
based on global error assumptions regarding the terrestrial data and 
the geopotential set w e  concluded that  the modified Sjoberg's method is 
the most accurate and promising technique for geoid undulation 
computations. The numerical computations of the geoid undulations 
using all the four methods resulted in agreement with the "ellipsoidal 
minus orthometric" value of the undulations on the order of 60 c m  or 
better for most of the laser stations in the eastern United States, 
Australia, Japan, Bermuda and Europe. A systematic discrepancy of 
about 2 m e t e r s  for most of the western United States stations was 
detected and verified by using two relatively independent data sets. 
The cause of this discrepancy was not found. A correction due to the  
inconsistencies of the terrestrial data and the potential coefficients 
within the cap surrounding the laser station, called the "local average" 
correction improved the results by 30 c m  and it s e e m s  necessary to 
apply this correction. For oceanic laser stations in the western Atlantic 
and Pacific oceans that no terrestrial data available, the adjusted 
GEOS-3 and SEASAT altimeter data w e r e  used for the  computation of t h e  
geoid undulation in a collocation method. 
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CHAPTER I 

INTRODUCTION 

The purpose of this investigation is the precise absolute geoid 

undulation computation for certain laser stations distributed around the  

world. The classical methods that combine terrestrial gravity data 

within a cap surrounding the computation point together with a high 

degree potential coefficient set through the use of integral formulas 

have been implemented to attack the problem. The only exception is the 

computation of the geoid undulation at four laser stations in t h e  Pacific 

and two stations in W e s t  Atlantic that have been carried out using 

adjusted Geos-3 and SEASAT altimeter data in a collocation method. 

Chapter 2 will give the necessary truncation theory. The general 

formulation is given in section 2.1. The conventional method of Stokes’ 

and Meissl’s modification are presented in Section 2.1 a s  a review. The  

modification of Stokes’ function with the ultimate goal to minimize certain 

errors in geoid undulation computations is a common concept for both 

Molodenskii’s and modified S j6berg’s methods. This is why Molodenskii’s 

and modified S jiiberg’s methods are discussed together as “new’’ 

methods in Section 2.3. 

A f t e r  the theoretical background for the above four methods is 

established, numerical computations based on certain error models will 
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show us the behavior of the  global root mean square (RMS) errors of 

the four methods as a function of the capsize. This is discussed in 

Chapter 3, We then will present information in Chapter 4 concerning 

the selected laser stations around the world. The available gravity data 

surrounding the laser stations were processed to be used in the 

integration formulas. This process is given in Chapter 5. The 

pre-processing of the data is first discussed in Section 5.1. Some 

prediction techniques which are necessary to transform the point data 

to mean values will be given in Section 5.2. The prediction procedure 

we used for the Bermuda area will be separately described in Section 

5.3. The terrain corrections and the  indirect effect for stations on high 

mountains is discussed in Section 5.4. To avoid the spherical 

approximation, ellipsoidal correction formulas will be given for the 

conventional methods, and will be derived for the new methods, in 

Chapter 6. A local average correction which is new in concept will be 

given in Chapter 7. 

The numerical results for geoid unduation computations using all the 

four methods (Stokes’, Meissl’s, Molodenskii’s and modified S jaberg’s 

methods) will be presented in Chapter 8: The details for the numerical 

application of the four methods will be given in Section 8.1; the results 

will be given in Section 8.2; a discussion of the  results and comparisons 

will be given in Section 8.3. Emphasis will be given on the following 

comparisons: 

a) Terrain corrected vs. uncorrected undulations. 

b) Computed undulations using all the four method vs. the value of 
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the undulations computed as the difference ellipsoidal minus 

or t hometric height . 
c )  

d) 

the undulations taken from a high degree geopotential model. 

e) 

undulations computed including the local average correction. 

Undulations computed using two different methods. 

Undulations computed using the four methods and the values of 

Undulations computed excluding the local average correction vs. 

The results will be presented by regions, for detection of any 

systematic differences that are correlated with a specific region. 

The collocation method w a s  also used to compute undulations from 

al t imeter  data in the vicinity of Bermuda. These results together with 

the undulations obtained from the calibration of SEASAT will be 

compared to the gravimetric undulations and will be presented in  

Section 8.4. The undulations for five oceanic laser stations computed 

using altimeter data in a collocation method will be given in Section 8.5. 

Finally, summary and conslusions will be given in Chapter 9, and 

recommendations for future studies in Chapter 10. 

A n  attempt has been made to maintain a uniform simple notation. 

The following will be adhered to: 

N geoidal undulation 

R m e a n  earth radius 

7 mean value of the  normal gravity 

9, spherical cap of radius $, surrounding t h e  computation 
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point 

Stokes’ function 

s (cos$, 

proper function subtracted from S(cos$) 

Stokes’ method 

Meissl’s method 

Molodenskii’s method 

Modified Sjoberg method 

S(cos3) - W f  (cos$) 

maximum degree of potential coefficients used 

maximum number of Fourier coefficinets of Wi(cos$> 

maximum degree of the terrestrial error degree 

variances 

nth surface spherical harmonic of terrestrial A; given 

on a sphere of radius R 

nth surface spherical harmonic of A;, based on a set of 

known potential coefficients given on a sphere of 

radius R 

degree error of A:,, (A&., = A&, + E : )  

degree error of i: (Ag; = itn + E ; )  

global average operator 

degree variance of Agn for high degrees given on a 

sphere of radius R 

degree variance of E ;  

degree variance of 8: 

truncation coefficients 

A A 
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Xi, Fourier coefficients of Si(cos$) 

W f n  Fourier coefficients of W, (cos$) 

P,(cos$) Legendre polynomial of degree n 



CHAPTER I1 

TRUNCATION THEORY 

2.1 General Formulation 

The geoid undulation N with respect to  a specified mean earth 

ellipsoid can be computed using gravity anomalies Ag on the  geoid 

through the use of the Stokes’ integral: 

N = A- JJ S(cosq)Agdu 
U 

4v 

A number of assumptions are  associated with formula (2.1): 

a) 

b) 

c) 

d) 

e) 

The boundary surface of the geoid is a sphere u 

Integration is done using global gravity data (on the sphere a) 

No masses external to the geoid exist 

The m a s s  of the reference ellipsoid equals the earth’s m a s s  

The normal potential on the ellipsoid equals the gravity potential 

on the geoid 

The ellipsoid’s center coincides wtih the earth’s center of mass. f )  

Assumption a) can be avoided by computing the ellipsoidal 

corrections (see Chapter 6); the error when doing assumption c )  can be 

diminished by the use of the terrain-corrected gravity anomalies (see 

Section 5.4); assumptions d), e) and f )  cannot be avoided and if they do 

not hold, a zero and first order term will have to be added to the 

6 
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computed undulation. Finally, assumption b) can be more or less 

avoided if gravity anomalies within a cap u, surrounding the 

computation point and a given geopotential model are combined. All  four 

methods that are described below will split the integral (2.1) into two 

parts (gravity anomalies within a cap and potential coefficient 

information) to avoid assumption b) which cannot be rigorously avoided 

due to the lack of global coverage of the existing gravity data. 

The next step is to  consider the basic modification of (2.1), so that 

certain errors are minimized. For all the four methods, denoting w i t h  

Si(cos$) the modified Stokes’ function, the modification is done so that: 

(i = 1, 2, 3, 4 corresponds to the four methods: Stokes’, Meisel’s, 

Molodenakii’s, modified S joberg’s). 

where Wi(cos$) is a properly defined function of t h e  spherical distance 

3. [For the original Stokes’ method it is clear that no modification is 

done, but the notation in (2.2) will be kept even for i = 1, for 

convenience. I t  simply holds then Wr(cos*) = 0; S,(cos$) = S(cos$)l. 

Any modification of the Stokes’ function has to maintain the 

integrity of the  basic Stokes’ equation in (2.1). Substituting (2.2) into 

(2.1), the modified Stokes’ equation will be: 

Equation (2.3) is rigorously equivalent to (2.1) 
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A powerful relationship tha t  provides a n  immediate  conversion of an 

integral  over  t h e  sphe re  u to a series of harmonics is proven in (Jekeli, 

1980) and will be used extensively within the  text. The relationship 

reads: 

where K(cos$) an a r b i t r a r y  kerne l  function 

2nkn t h e  eigenvalues of t h e  i n t e g r a l  operator  in (2.4) 

Ag,,,,, t h e  nth degree and mth order  sphe r i ca l  harmonic of t h e  

sur face  function Ag. 

From (2.4) w e  obtain 

Applying (2.5) t o  (2.3) we eas i ly  obtain:  

where 2nWin are the  eigenvalues of t h e  second integral  operator  in  

(2.3). 

Now we are ready to split (2.6) (or equivalently (2.1)) into two 

components. From (2.6) we take 
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Note that the second and the  third t e r m  in (2.7) are to be computed 

from a given set of potential coefficients and the first t e r m  is the cap 

contribution. 

To bring the second integral to the form of a summation, we write 

Expanding  COS^) i n  spherical harmonics w e  have 

where g i n  are the Fourier coefficients of  COS^): 

(2. l o )  

(2.11) 

Since 2.rrQin are the eigenvalues of the integral operator of the 

right-hand side of equation (2.8), equation (2.5) together with (2.8) 

gives 

(2.12)  

Substituting (2.12) into (2.7) the final equation for the modified Stokes' 

function is 
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(2.13) 

The practical computation of (2.13) is done using fl*xfl* terrestrial 

mean gravity anomalies AgT for the numerical integration and a set of 

potential coefficients up to degree M as  follows: 

A 

(2.14) 

To derive expressions for the global RMS undulation error associated 

with (2.14), we  will follow the concepts given in (Christodoulidis, 1976): 

The global RMS undulation error will have four error components, due 

to: 

1. 

be called "propagation error". 

2. Finite blocksize (i.e. 8' is not infinitely small) used for the 

Stokes' numerical integration. This error will be called "discretion 

error". 

3. Erroneous potential coefficients. This error will be called 

"commission error". 

4. Limited degree of expansion of the potential coefficients used. 

This error will be called "ommission error". 

Erroneous i s T  (mean values of 9'x8* blocksize). This error will 

Notice that there is an analogy between error sources 1 and 3 and 2 

and 4. Errors 1 and 2 are to be interpreted as the errors due to 

erroneous input data in (2.14) ( igT,  iss) whereas errors 2 and 4 are  to 

be interpreted as  the errors due to the limited degree of expansion of 
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the terrestrial data (ig: a re  taken only to degree n = n r )  and t h e  

potential coefficient data (ig," a re  taken only up to degree n = M). 

Using the rule of thumb for the maximum degree n T  of t h e  

terrestrial error degree variances, we  have 

n T  = i8o*/e- (2.15) 

where 8" is the blocksize (in degrees) of the mean gravity anomalies 

used in (2.14). 

W e  then furthermore assume that 

with C, taken 

+ E a  O = n - L n T  

= cn n T  < n 

from a model of anomaly error degree variances. 

(2.16) 

(2 .17)  

A common model is the Tscherning-Rapp model (Tscherning and 

Rapp, 1974): 

sn+z 3 L n < m  A(n-1) 
(n-2) (n+B) c, = 

with A = 425.28 mga12; B = 24, S = 0.999617, C, = 7.5S4 mga12 

used for the numerical applications. The C, values refer to 

radius equal to the mean earth radius. 

Similarly, for the potential coefficient set, we  assume: 

(2.18) 

and will be 

a sphere of 

(2.19) 
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Combining (2.13) and  (2.14) tog- ther  with t h e  ass1 

(2.20) 

mptions (2.16), (2.17) 

a n d  (2.19), (2.20) we obtain t h e  error when computing t h e  geoid 

undulation th rough  (2.14): 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

Here X i n  are the Fourier coe f f i c i en t s  of Si(cosq). Simi lar ly ,  

(2.27) 

According t o  our discussion above w e  have t h e  following e r r o r s :  

Error 6Ni,, is t h e  error due to er roneous  terrestrial g rav i ty  da ta  

(propagation error) 
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Error 6Ni,, 

Error 6N1,, 

Error 6Ni,, 

is the error due to discretized data in the numerical 

integration (discretion error)  

is the error due to erroneous potential coefficients 

(commission error)  

is the  error due to the limited degree of expansion of the 

potential coefficients (omission error ) 

The expected global mean square errors of each error source 

described above can now be found, using (2.26), (2.27), (2.24), (2.25): 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

The total global mean square error, assuming uncorrelated error sources 

is 

(2.32) 

and the total  global root m e a n  square error is from (2.32): 

We thus have derived general expressions for the geoid undulation 

computation and it's expected global RMS error when a modification of 

Stokes' function is attempted. Each of the following four methods, or 
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even any arbitrary modification of Stokes' function which follows the 

principal (2.2) can be easily formulated according to (2.14) and (2.28) - 
(2.31). The derivation has been given step-by-step because of its 

importance for the error analysis discussion, and for the understanding 

of the sections 2.2 and 2.3 that follow. 

2.2 The Conventional Methods 

2.2.1 Stokes' Method 

In Stokes' method (i=l) no modification of the Stokes' function is 

attempted. 

In this case: 

WI(COS-$) = 0 (2.34) 

which m e a n s  that  all the  Fourier coefficients Win are  zero: 

W1" - 0  - O h n < e  

and from (2.2) i f  follows tha t  

SI (cos$) = S( cos$) 

(2.35) 

(2.36) 

The Fourier coefficients of S,(cos*) can be taken from the expansion of 

the Stokes' function in spherical harmonics: 

(2.37) 

Expansion (2.37) can be rewritten as 

n-0 (2.38) 

Comparing (2.37) and (2.38) the Fourier coefficients XI, of Sl(cos$) are 
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given by (cf. Heiskanen and Moritz, 1967, p. 97). 

0 O 4 n 4 Z  (2.39) 

Thus, the undulation in Stokes’ method is computed according to (2.14) 

as: 

(2.40) 

with the components of the global mean square error from (2.28) - (2.31) 
and (2.35), (2.39) 

a m  2 2 
- - Qln] un (discretion error)  

(commission error)  

- 
%,4 = ($11 Qtncn (omission error) 

n=M+l 

The t o t a l  global RMS error  is 

(2.42) 

(2.43) 

(2.44) 

- 
6N1 = (6N:,, + 6Nfy2 + z:,, + 6N:y4)x 

The truncation coefficients Qln can be numerically computed by a 

subroutine written by Paul (1973) based on an accurate recursive 

formula. 

(2.45) 



2.2.2 Meissl’s Method 

To avoid the discontinuity of the kernel (2.9), M e i s s l  (1971) 

introduced the following modification: 

It follows that 

and 

(2.46) 

(2.47) 

(2.48) 

Notice that the kernel  cos$) is now a continuous function of the 

spherical distance 3 everywhere in 0 4 3 4 n. 

We now proceed for the computation of the Fourier coefficients X,,, 

W z n ,  QZn*  

Introducing t h e  following recursive formulas for P,(y), y = cos9 

( t h e  prime denotes differentiation with respect t o  t h e  argument y)  

and denoting with y o  = cosqo, we take: 
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(2.53) 

From (2.54) and (2.52) we obtain 

A n  alternative formula of Qzn can be derived, using (2.55) and (2.49). 

Now 2n+l)yP,(y) - nP,-l (y) 
n+ 1 pntl(Y> = ( (2.56) 

Substituting (2.56) into (2.55) we have: 

Note that for n = 0 the Q z o  coefficient usually given in the literature 

(Rapp, 1985a) as 

Q20 = So(1-Yo) (2.58) 

corresponds to our Q z o  + Wzo = -So(yo+l) + 2So = SO(~-YO) 

Finally, the X2, coefficients are 

(2.59) 
2 ki nG? 



i a  

Now w e  are ready to give the final formulas for Meissl’s method. The 

undulation is computed as 

(2.60) 

with the components of the global mean square error  from (2.28) - (2.31) 

and (2.53)’ (2.55), (2.59): 

~ N Z , ~  = (xzn  - ~,,>2u, (propagation error)  

6N$,, = [$Iz E [- 2 - QZn]’Cn (discretion error) 
n=nT+l n-1 

(commission error)  

(omission error)  

(2.61) 

(2.62) 

(2.63) 

(2.64) 

The to t a l  global RMS error is 

- - - 
6N’ = clu:,, + z:,’ + &X$,3 + SN:,,)~ (2.65 j 

Expressions (2.61), (2.62), (2.63), (2.64) and (2.65) are equivalent to the 

expressions for the global mean square undulation error of Meissl’s 

method given in (Engelis, et al., 1985a) if we  are to start t h e  summations 

from two instead of zero. 

2.3 The New Methods 

2.3.1 Molodenskii’s Method 

W e  will now present the Molodenskii’s modification to  the original 
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Stokes' formula (2.1) (Jekeli, 1980, p. 22). The function of $, W,(cos$) 

that is to be subtracted from the Stokes' function S(cos$) is 

The Fourier coefficients X3,, W3n, and Qsn can be immediately computed. 

Rewritting (2.67) as 

(2.68) 

with 

(2.69) 

2 ki i i < n < -  

we obtain the Fourier coefficients X3,,. 

Furthermore, from (2.66) it is  obvious that W3n (0  4 n 4 fi) are the 

Fourier coefficients of W3 (cos$). Finally, since 

(2.70) 
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(2.71) 

The definite integrals f r o m  -1 to yo of the product of two Legendre 

polynomials Pr ( y) Pn ( y) are analytically given in (ibid, p. 10). 

If 

(2.72) 

Also, e,,, = - zr+l [Pr+l (YO 1Pr-i (YO 11 r > O  (2.74) 
1 

eo,, = 1 + Yo (2.75) 

Formulas (2.73) - (2.76) are very useful for the numerical computation of 

ern coefficients and can very easily be programmed. Notice that from 

(2.72) it holds 

ern - - enr (2.77) 

Inserting (2.72) into (2.71) we have the truncation coefficients €I3,,: 

(2.78) 

In Molodenskii’s method the function W3(y) is to be defined as the 

“best” approximation to S(y) in the interval [-1, y o ] ,  by minimizing the 
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norm of the difference: 

(2.79) 

After condition (2.79), the W3, coefficients are computed (without the 

derivations, which can be found in (ibid, pp. 29-31)), from 

(2.80) 

with 

h,, = (2n+l)k-r f f =o [ y ]  [y](l-k)i+l O h n < r  

(2.81) 

2 
hrr = 2r+l k-' r h o  (2.82) 

23kp P = r-n-1, q = r+n , k = cos 2 

It also follows immediately from condition (2.79) t ha t  

Q3 n = o  0 4 n 4 i i  (2.83) 

The number Ji is the maximum number of "proper" harmonics that are 

removed from the Stokes' function (see eq. (2.67)). For reasons that 

will be explained in Chapter 3, we choose 

i i < M  (2.84) 

Then, in Molodenskii's method the undulation is computed a s  (ibid, eq. 

(95)): 
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The components of the global mean square error from (2.28) - (2.31) and 
(2.69), (2.71)' (2.80), and (2.83) are: 

The total global "4s error is 

- - - 
6N3 = (zg,l + 6Ng,2 + + 6N3,4)X 

(propagation error) 

(discretion error) (2.87) 

(commission error) (2.88) 

(ommission error) (2.89) 

(2.90) 

2.3.2 Modified Sjijbern's Method 

Proceeding as in Molodenskii's method, we have that 

w,(cOsq) = k=o II: 2k+l 2 w 4 k  P k(cOsq) 
- 

(2.91) 

is  the function to be subtracted from the Stokes' function S(cosq). 

Then 

2n+l 
or S,(cos9) = c 2 x4nPn(cosq) 

n=O 

with 

(2.92) 

(2.93) 
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Finally 

(2.95) 

and 

(2.96) 

with ekn from (2.73) - (2.76). 

Now, in general, Q4, f 0, 0 n 6 6, but W4n = 0 for 6 < n 6 M 

since we again choose (see Chapter 3) fi < M. Using the general 

formulation discussed in Section 2.1, we compute the undulation 

according to (eq. (2.14)) 

(2.97) 

with the components of the global mean square error f rom (2.28) - 
(2.31): 

(propagation error) (2.98) 

2 - 
6Nf, z = ($1 zngnT+l [x - e,,] 'Cn (discretion error) (2.99) 
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(commission error) (2.100) 

OD - 
6 N f , 4  = [$] C Q f n c n  (ommision error) (2.101) 

n=#I+1 

and the to ta l  m e a n  square error: 

In Meisal's method care is taken for the kernel sz(cos3) to be 

continuous at 9 = q0; in Molodenskii's method the norm of the 

approximation of S(cos$) through W,(cos?(I) is minimized (eq. (2.79)). In 

this method, the brilliant idea, due to Sjoberg (1986a) to directly 

minimize the expression of the mean square error (2.102) is utilized: 

- 
6Nf + minimum (2.103) 

To minimize (2.102) the partials are to be taken with respect to (up till 

now) arbitrary coefficients W4n: 

- k = 0 ,  1, ..., n (2.104) 

Notice that the coefficients Q 4 n  are also linear functions of W4" through 

eq. (2.96). The algebra will be given in Appendix A. W e  give the final 

result of the equations (2.104). They are equivalent to the linear 

system: 

(2.105) 
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2k+l 2t+l +- -  [ 1 etnekn(un 6cn> 2 2 n=o 

(2.106) 

k*t 
k=t Kroenecker's 6kt is defined as 6 k t  = { y  

The computation of W4n coefficients is achieved by inverting 

the (symmetric) matrix A = [a,, ... &.;;.... ] and multiplying the result by 
the vector H = [h, ... hk ... hi]': 

. . . . . . . zi ; 

[W., W42 . . . W4;IT = A-lH (2.108) 

Once the W,, coefficients are computed, the .X4n coefficients are 

computed backwards through (2.94), the Q4n through (2.96) and finally 

the undulation through (2.97) and it's global mean square error 

components through (2.98) - (2.102). 



CHAPTER I11 

ERROR ANALYSIS 

In this chapter the numerical application of the  formulas giving the 

global RMS undulation error for all the four methods will be examined: 

Formulas (2.41) - (2.44) for Stokes' method; (2.61) - (2.64) for Meissl's 

method; (2.85) - (2.89) for Molodenskii's method; (2.98) - (2.102) for 

modified S joberg's method. Irrespectively of which method will be the 

most precise (Le. will give the smallest global RMS undulation error),  all 

the methods will be considered for the actual geoid computations. 

I t  is clear by examining the global RMS error formulas for all the 

methods discussed in t h e  previous chapter that we need models for the 

error anomaly degree variances due to the errors  of both the B"x0" 

terrestrial gravity anomalies (a,) and the  potential coefficients (6C,) to 

numerically apply the formulas. Also, t he  anomaly degree variances (C, ) 

are required, and they are modeled a s  discussed before (eq. (2.18)) 

according to the Tscherning-Rapp model. 

The anomaly degree variances are used to compute the ommission 

error for the degrees M<n<* and the discretion error for degree nT<n<*. 

W e  here list some values of the anomaly degree variances C, of the 

Tscherning-Rapp model (Table 1)' for high degrees. 

26 
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Table 1. Anomaly Degree Variances of the Tscherning-Rapp Model (mgal'). 

1.955 
1.766 
1.173 

400 0.862 
500 0.671 
2000 0.098 
5000 0.012 

Tests using different values of A are later presented in this chapter. 

The error anomaly degree variances due to erroneous potential 

coefficients are taken from the errors  SC,,, Ss,, of the fully normalized 

potential coefficients of the OSU86D solution (Rapp and Cruz, 1986a). 

The above set of potential coefficients does not contain any zero or first 

order coefficients, and thus the summation when computing t h e  

commission error, will start from 2 

n - 
6Cn = y'(n-1)' 1 (6Cnma + 6Snm2) 2dndM 

Notice that in writing (3.1) we assume that 

coefficients are uncorrelated. 

m= 0 
( 3 . 1 )  

the errors  in the potential 

The numerical values of 6C, for some degrees are listed in Table 2. 
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Table 2. Error Anomaly Degree Variances due to the OSU86D Potential 
Coefficient Errors ( mgalz). 

6C, (mgall) 

0 .644~10-~ 
0.745.10-4 
0.296*10-3 
0.256*10-z 
0.568*10-' 
0.274 
0.522 
0.936 
1.300 

For the  error anomaly degree variances due to the errors  in the O'xO' 

terrestrial anomalies, various error models were examined. For all the 

models we assumed ig8 = igI = 0, and thus for the computation of the 

propagation error (eq. (2.28)) t h e  summation will again start from 2. 

MODEL A 

The error anomaly degree variances are taken from the numerical 

integration of the error covariance function C, (3) of the 6'xlO' free-air 

anomalies in Europe (Weber and Wenzel, 1982). 

Pellinen smoothing factors for  a spherical cap equivalent 
t o  a 6'xlO' block 

22e-4V + 3 mgala error  covariance function 

spherical separation i n  'degrees 

maximum distance of integration = 10' 

s tep  of integration = 1' 
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h(q,$,,,ax)= $ (1 + cos *] Hanning smoothing window, t o  smooth out 
$ma, 

the  side lobes-produced by the limited length (10') of the 
error  covariance function 

nT 1800 maximum degree a t  the anomaly error degree variances 

The above error covariance function i m p l i e s  an error variance C,(O) = 25 

mgal' and a correlation length A = 0."21. The correlation length A is 

defined as: 

MODEL B 

Another model proposed by Sjsberg (1986b) is based on the 

following form of the error covariance function: 

r 7 1 I 
C,($'> = c(1-u) ucosq-tu' ) x - 1 - ucosq] ( 3 . 3 )  

where the coefficients u and c are  computed by specifying the variance 

C,(O) and the correlation length A. Then the error  degree variances are 

given by the closed formula: 

6, = c(1-u)u" Z d n < m  (3 .4)  

For t h i s  form three separate sets of C,(O) and A were tested: 

MODEL B.l C,(O) = 25 mgal', X = 0:21 (to comply with MODEL A )  

MODEL B.2 C, (O)  = 25 mgal', A = 0:l 

MODEL B.3 C , ( O )  = 25 mgal', A = 1."0 

The latter two models (B.2 and B.3) check the sensitivity of the global 

RMS undulation error with respect to the correlation length of the error 

covariance function. 



30 

MODEL C 

In case that we assume uncorrelated errors  of "a" mgal  between the 

0'xO' anomalies, then the error anomaly degree variances can be given 

by (Wichiencharoen, 1984): 

u, = (2n+l) 4n e a  (3.5) 
aa 24nrnr 

where 8 is the blocksize i n  radians; 

nT = 180/0' 0' being the blocksize i n  degrees. For t h i s  model we 
used 0' = 2/60 (Z'x2' anomalies). 

Notice that the error degree variances given in (3.5) increase linearly 

with the degree. This does not happen with any of the models A, B.l, 

B.2, B.3. Numerical values of the error  anomaly degree variances implied 

by models A, B.1, B.2, B.3 and C are listed in Table 3. 

Table 3. Error Anomaly Degree Variances (in m g a l l )  Implied by Models A, 
B.l, B.2, B.3, C. 

- 
n - 

2 
3 
4 
5 

10 
20 

100 
1000 
1500 
1800 
5000 - 

A 
0.034 
0.948 
0.061 
0.073 
0.121 
0.133 
0.034 
0.010 
0.015 
0.037 - 

B. 1 

0.053 
0.053 
0.053 
0.053 
0.052 
0.051 
0.043 
0.006 
0.002 
0.001 
0.128-10-5 

For comparison purposes 

MODEL 
B.2 

0.025 
0.025 
0.025 
0.025 
0.025 
0.025 
0.023 
0.009 
0.006 
0.004 
0.162 - 10-3 

B.3 

0.257 
0.255 
0.252 
0.250 
0.237 
0.214 
0.093 
0.837*10-' 
0.472-10-' 
0.211.10-8 
0.861 * lo-' 

C 
3.38- 10- 
4.73. 
6.05. 
7.40 * 

1.42 * 

2.75. lo-' 
1.35 lo-* 
1.35 - 
2.43 * lo-' 
6.73 - 10- 

2.02- 10-3 

for all the four methods w e  will initially 

use Model A. Then, models B.l, B.2, B.3, C will be tested using the 
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modified Sjoberg's method only. 

The choice of fi (see Chapter 2)  to be less than the maximum degree 

of the potential coefficients used is discussed by Jekeli (1980, p. 33, fig. 

10). Using the Molodenskii's method Jekeli showed that one obtains the 

lowest global RMS undulation error when FI < M. However the above 

conclusion is based on errorless gravity data: 

u, = 0 26n<- (3.6) 

Sjoberg (1986a, p. 14, fig. 2) also shows that the lowest global RMS 

undulation error is achieved if a "hybrid" solution is used with fi = 20, 

M = 180. Finally, the choice il = M, in the case of the modified 

Sjoberg's method with M = 180, will require the inversion of a symmetric 

matrix (see eq. (2.108)) of dimension 180x180 and the computation effort 

does not pay back in terms of pain in precision, as it will be shown 

later in t h i s  chapter. 

Figure 1 shows the  global RMS undulation error for all the four 

methods for capsizes O' ,  l', ... , 10'. The cases fi = M = 20 are also 

shown for the Molodenskii's and modified S joberg's methods, which for 

$o < 4' have large (greater than 70 cm) error due to the large 

ommission error. (For the rest of this discussion, when we  use the 

t e r m s  "Molodenskii's method", or "modified S joberg's method" we  will 

refer to t h e  cases fi = 20, M = 180, unless otherwise stated.) 

The gain in precision for all the capsizes when the modified 

Sjoberg's method is used is clear, This results from the fact that the 
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u t i  II - i i  ssrx 

c I L I ~ u u c I u u u ~ ~ u  I l I I I I I  
0 ~ 9 3 P ~ m S m N - 0 0 0 0 0 0 0 0 0 0  
N ~ - ~ ~ - I - I - , ~ 9 3 P ~ m s ~ ~ - o  

lW31 UOUkl3 ' Q N f l  SWU 1t181313 

Figure 1. Global RMS Error in Undulation (in c m )  for the Four Methods 
U s i n g  Model A for the Terrestrial Anomaly Errors and the 
OSU86D Potential Coefficient Errors. 
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modified S joberg's method minimizes the global mean square undulation 

error itself (condition (2.103)). However, this improvement in precision 

for the capsize of 2' is on the order of 5 c m  and may or may not be 

realized when actual geoid computations will be carried out using the 

above capsize. For capsizes 0'4$,43' the Molodenskii's method is better 

than the Meissl's method. For capsizes 3'4$046' the reverse happens. 

Then, for capsizes 6'$0610' the Molodenskii's method takes again the 

advantage. Stokes' method compares well with the other methods for 

0'4$042'. For larger capsizes the global RMS error increases faster for 

Stokes' method than for any other method. This is due to t h e  fact tha t  

the propagation error increases faster for Stokes' method than for any 

other method as the  capsize increases. Notice also from the above 

diagram tha t  increasing the capsize does not substantially decrease the 

error in the  case of the modified Sjoberg's method, which is welcome 

when actual geoid computations are performed. 

In caBe that we assume uo = u1 = 6Co = 0 (see also Chapter 10)' the 

modified Sjoberg's method results in a singular matr ix  A to be inverted 

for $0 = 0'. This follows immediately from the orthogonality of the 

Legendre's polynomials: (yo = cos0 = 1) 

(3.7) 
1 

-1 
e r n  = I pr(Y)pn(Y)dY = 0 r * n  

Then the elements of matrix A from eq. (2.106) will be: 

at, = 0 for t f r; aoo = aol = a,, = 0 

and matrix A has two rows equal to zero, The value of the global RMS 

error for this  case can be computed using the values of the commission 
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and omission error of the OSU86D set. (The propagation and the 

discretion error are zero). Also, matrix A is near-singular for the  other 

nonzero capsizes (see also Colombo’s method discussed in (Jekeli, 1980, 

p. 38), where the condition 6N, = 0 results in an ill-conditioned system 

of equations). Further investigation is required that  will result in some 

type of regularization of matrix A. In Sjoberg’s method the minimization 

of 6Nt is equivalent to t h e  minimization of the weighted sum of the 

residuals VTPV = min in a traditional least squares adjustment. See also 

(Wenzel, 1982). 

- 

The individual error components of the modified S joberg’s me’thod 

are  shown in Figure 2, and it can be seen that the major contibution to 

the error budget comes from the propagation and the commission error 

which for &, = 3’ are  on the order of 45 cm and 40 cm respectively. 

The omission and the discretion error are very small (less than 8 cm for 

30 2’). 

W e  then tested models A-C for t h e  error anomaly degree variances 

using the modified Sjoberg’s method. For these tests and for the  rest 

of this discussion the  capsize of 2’ has been used, unless otherwise 

stated. The global RMS undulation errors due to the above models are 

shown in Table 4: 
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0 

Figure 2. The Various Error Components of the Global RMS Undulation 
Error (in c m )  for the Modified Sjaberg’s Method (E 20, M = 
180). Model A for the Terrestrial Anomaly Errors and the 
OSU86D Potential Coefficient Errors Have Been Used. 
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Table 4. Global RMS Undulation Error (in c m )  for the Modified Sjoberg’s 
Method Using Different a,-models for Anomaly Errors. 

W e  see by comparing model A and B.l that for the s a m e  error 

variance C,(O) and correlation length A, the form of the error covariance 

function does not give any significant difference for the total error 

budget. But the correlation length plays an important role and it can 

increase the error from 52.70 c m  (A = 0:l) to 72.10 cm (A = 1.).  

Finally, assuming uncorrelated errors, the total error in undulation is 

reduced to 35.27 c m  which is the most optimistic case. 

The choice of the  error variance C,(O) is also a very important 

factor for the modified Sjoberg’s method. To demonstrate this we will 

show results of actual geoid computations in b u i  Idand (lecated in the 

vicinity of Hawaii). Using eq. (2.97) with fi = 20, M = 180 w e  computed 

the geoid undulation for station 7210 in Maui from 2.~2‘ terrestrial and 

altimetric anomalies and the OSU86F set  of potential coefficients. For 

more details see the next chapters. In Table 5 with N, we denote the 

first  t e r m  in (2.97) (cap contribution) and with N, we denote the last 

two terms in (2.97) (Le. contribution from the outer zone). Then N = N, 
+ N,. 
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Table 5. Actual Geoid Computations in Maui (Station 7210) with the 
Modified S jijberg’s Method Using Different Error Variances. 

C,(O) (mga12) 
25 I 10 I 625 

I 
N, (m) 17.80 19.17 7.38 

N (m) 18.66 18.69 16.81 

N,, (m> 0.86 -0.48 9.43 

Results of Table 5 are  to be compared with the value of 20.49 m for 

the undulation of the station (See chapter 4). Notice that the smaller 

the error variance, the larger weight will be given to the terrestrial 

gravity data. For the pessimistic selection of the C,(O) to be 625 mgal’, 

the value of the undulation shows a discrepancy of -3.50 m with the 

value of 20.49 m, whereas for the other two selections of CJO) the 

discrepancy is -1.80 m. 

Generally, each of the four methods we  examine assigns different 

weights to t h e  terrestrial gravity data and to the potential coefficients. 

To see this ,  we  can rewrite (2.14) a s  

Thus, the weights that  are used for  the t e r r e s t r i a l  data are: 

(3.9) 

For the potential coefficients they are: 
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(3.10) 

Equations (3.9) and (3.10), in the case of Stokes’ method (i=l),.  are 

valid for na2 and for Meiesl’s method (i=2) for nfl, so that the 

denominators of (3.9) and (3.10) do not become zero. The weights $ti, 

Pi; for Stokes’ method and F2A, P2n9 for Meisel’s method are  determined 

independently of the errors of ii and it. (They are  only functions of 

the capsize q0).  For the Molodehskii’s method F3; and P3z are 

determined immediately after the numbers 6 and M are  given, but, again, 

without any refinement that would account for errors in ii, it. Only 

the modified S joberg’s method gives weights that take into account the 

errors in A i  (through u,) and in A; (through SC,). This is clearly 

shown in Table 5. The selection of the proper model for the anomaly 

degree variances however does not play an important role for the  

modified Sjoberg’s method, since this model is used to model the 

behavior of the anomaly spherical harmonics of high degrees only (n > 

M for the omission error and n > nT for the discretion error).  To see 

this we list in Table 6 the various global RMS undulation errors  for the 

modified Sjoberg’e method, when different values of A for the C, model 

(see eq. (2.18)) are used: 

- 

Table 6. Influence of the A-value of the C, Model on the Global RMS 
Error for the Modified Sjijberg’s Method. 



39 

The effect of different S-values (see eq. (2.18)) is expected to be 

neglibible for 6N4, but separate tests have not been carried out to show 

this. 

W e  now examine the global RMS undulation error for the 

Molodenskii’s and modified Sjoberg’s method in case that a higher 

degree of expansion M is used for the potential coefficients. Table 7 

clearly shows that increasing the  degree of expansion from M = 180 to M 

= 250 the global RMS error remains essentially the same .  

Table 7. Global RMS Undulation Error (in c m )  for Molodenskii’s and 
Modified S joberg’s Methods Using Two Different Degrees of 
Expansions. 

- 
6N (a) 

METHOD M = 180 I M = 250 
Molodenskii’s 61 I 61 

IModified Sj6berg’sl 60 I 60 I 

Finally, different values of ii (number of harmonics in W3(q) and 

W , ( q ) )  influence t h e  global RMS error only in the  case of Molodenskii’s 

method as Table 8 shows (M = 180). 

Table 8. Global RMS Undulation Error (in c m )  for Molodenskii’s and 
Modified S joberg’s Method Using Various Numbers of Harmonics 
in W i ( y 5 ) .  

- - - 
n 6N3 6N4 
5 63 61 



40 

Table 8 shows that the  combination fi = 20, M = 180 gives the 

smallest global RMS error in the undulation in the case of Molodenskii’s 

method. This result is in analogy with (Jekeli, 1980, p. 33, fig. 10). 

The improvement we obtain in t h e  case of the modified SjGberg’s method 

(1 c m )  is negligible and the computation effort much larger when we 

increase ii. 

Summarizing, we see that t h e  selection of the u, and 6C, models is 

critical for the modified SjGberg’s method, whereas the C, model does 

not play an important role. Although we can have a reasonable 6C, 

model using eq. (3.1), it is v e r y  difficult to have a reasonable u, model 

for the terrestrial gravity anomalies, because for the majority of the 

cases, either 

a) N o  error estimates are available, or 

b) Unrealistic error estimates are given. 

Even if reasonable error estimates were  available for the given gravity 

data, the algorithms to compute the error covariance function e,($) 

and/or the corresponding u, model have not yet been developed 

satisfactorily: The method of computing an error covariance function by 

comparing two independent data bases for the’same region (Weber and 

Wenzel, 1982) suffers from the fact that two independent da ta  sets are 

rarely given for the s a m e  region since the gravity measurements are 

usually made once within a broad t ime  period. On the other hand, the  

empirical error covariance function computation based on actual error 

e s t i m a t e s  will not give a unique solution due to the plus or  minus sign 

of the error estimates. 
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Finally, the selected u, models are only approximate and t h e  

assumption that they are valid everywhere on the earth is not 

rigorously t rue .  Also, the reference surface that is associated with 

these models has been taken to be the sphere of radius R, or, in a first 

approximation, the geoid. Changing the radius of the reference surface, 

by several hundred m e t e r s ,  will cause a small change in the un models 

and such a change will not significantly affect the error analysis. 

However from the theoretical point of view, it is critical to associate a 

surface with the selected models. 



CHAPTER IV 

LASER STATIONS 

The coordinate system that was  selected as the  consistent 

coordinate system for defining the laser station coordinates was  the SL6 

system (Robbins et al., 1985). Although the laser station coordinates 

w e r e  also given in the SL5.1AP system (Smith et al., 1985), we selected 

the SL6 system a s  the most recent one. Initially, the  geodetic 

coordinates (9,X,h) of 46 laser stations referred to the SL6 solution were 

available from Robbins et al., (1985). The station number, name and 

occupation of these stations are given in Table 9 (Alfano, 1986). 

Stations 7907 in Peru and 7929 in Brasil w e r e  immediately excluded from 

the list of the  stations that we would finally use for geoid undulation 

computations due to the Lack of local terrestrial gravity information. We 

thus retained 44 stations whose coordinates had to be transformed from 

the SL6 reference ellipsoid (a, = 6378144.11 m; f = 1/298.255) to our 

adopted reference ellipsoid ( w e  will call it OSU GRS: Qhio State 

- University Geodetic Reference System) with parameters: 

a, = 6378136.0 m 

f = 1/298.257222101 
(4.11 

GM = 398600.440 km3/sec3 

o = 729115.10’11 rad/sec 

The three last parameters in (4.1) are the s a m e  as the parameters 

42 
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Table 9. Laser S ta t ions  Occupation 

NUMBER 

705 1 
7109 
7886 
7062 
7110 
7082 
7084 
7114 
7085 
7115 
7086 
7885 
7112 
7887 
7888 
7921 
7894 
7063 
7064 
7100 
7101 
7102 
7103 
7104 
7105 
7069 
7091 
7120 
7210 
7090 
7943 
7067 
7805 
7939 
7835 
7840 

7834 
7838 
7061 
7068 
7092 
7096 
7121 
7907 
7929 

at333 

NAME 
Q U I  LAS 
Q U I  LAS 
Q U I  LAS 
SANDIE 
MONLAS 
BEARLK 
OVRLAS 
OVRLAS 
GOLDLS 
GOLLAS 
FTDAVS 
FORLAS 
PLALAS 
VANLAS 
HOPLAS 
HOPLAS 
YUMLAS 
STALAS 
GSFCLS 
GSFlOO 
GSFlOl 
GSF102 
GSF103 
GSF104 
GSF105 
FZAMLAS 
HAY LAS 
MUILAS 
MAULAS 
YARLAS 
ORRLAS 
BD I LAS 
FINLAS 
MATLAS 
GRALAS 
RGOLAS 
KOOLAS 
WETLAS 
SHOLAS 
EASTER 
GRKLAS 
KWJLAS 
SAMLAS 
HUANIL 
ARELAS 
NATLAS 

OCCUPATION 

Quincy, Ca l i fo rn ia  
Quincy, Ca l i fo rn ia  
Quincy, Ca l i fo rn ia  
Otay Mountain, San Diego, Ca l i fo rn ia  
Mount Laguna, Ca l i fo rn ia  
Bear Lake, U t a h  
Owens Valley Radio Observatory, Big Pine, Calif .  
Owens Valley Radio Observatory, Big Pine,  Calif .  
Goldstone, Ca l i fo rn ia  
Goldstone, Cal i forn ia  
McDonald Observatory, Fort  Davis, Texas 
McDonald Observatory, Fort  Davis, Texas 
P l a t t e v i l l e ,  Colorado 
Vandenberg A i r  Force Base, Cal i forn ia  
Mount Hopkins, Arizona 
Mount Hopkins, Arizona 
Ywna Proving Grounds, Arizona 
GORF, GSFC, Greenbelt, Maryland 
GORF, GSFC, Greenbelt, Maryland 
GORF, GSFC, Greenbelt, Maryland 
GORF, GSFC, Greenbelt, Maryland 
GORF, GSFC, Greenbelt ,  Maryland 
GORF, GSFC, Greenbelt, Maryland 
GORF, GSFC, Greenbelt, Maryland 
GORF, GSFC, Greenbelt, Maryland 
Pa t r ick  A i r  Force Base, F lor ida  
Haystack Observatory, Westford, Massachussets 
Lure Observatory, Mount Haleakala, Maui, H a w a i i  
Lure Observatory, Mount Haleakala, Maui, H a w a i i  
Yarragadee, Aus t ra l ia  
Orroral  Valley, Aus t ra l ia  
Bermuda Is land 
Metsahovi, Finland 
Matera, I t a l y  
Grasse, France 
Royal Greenwich Observatory, Great Br i t a in  
Kootwijk Observatory, Apeldoorn, Netherlands 
Wettzell ,  Federal Republic of Germany 
Simosato Hydrographic Observatory, Japan 
Easter Is land,  Chi le  
Grand Turk Is land 
Kwajalein, Marshall I s lands  
American Samoa 
Huahine, Society I s land ,  French Polynesia 
Arequipa, Peru 
Natal, Braz i l  
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of the GRS'80 reference ellipsoid. For the transformation of coordinates 

we followed the scheme (Rapp, 1985~): 

(+,X,h)sLs + ( X , Y , Z )  + (+ ,X,h) , s~  

Provided the  orthometric height H of the laser station is available 

the value of the undulation NT of the station is the difference 

N T = h - H  (4.2) 

where h is the given ellipsoidal height. The reference point €or the 

ellipsoidal heights of the laser station w a s  given either as  a fixed 

marker on the ground (Bench Mark) or as the intersection of the 

horizontal and vertical axes of the laser instrument. Accordingly, the 

reference point for the orthometric height should be the same, so that 

the value of the undulation computed from equation (4.2) is meaningful 

and useful for comparisons. In case that the reference point is not the 

s a m e  then discrepancies up to 3.5 m (maximum vertical separation 

between the Bench Mark and the instrument's axis) can occur. Using 

the calibration information for the laser stations included in (Noll, 1983) 

w e  transformed the orthometric heights to refer either to the  fixed 

marker or to the intersection of the instrument axis so that the 

orthometric and the ellipsoidal height would have the s a m e  reference 

point. This transformation was not possible for 11 stations because no 

calibration data (Le. North-East-Up coordinates of the intersection of the 

instrument axis with respect to the fixed marker) w a s  available for those 

stations. For the above 11 stations the orthometric heights were  taken 

from (Alfano, 1986)' and they are thought to refer to the intersection of 

the instrument axes. 



In Table 10 w e  see the  coordinates of the stations transformed to 

the OSU GRS, the orthometric height, the reference point (BM = fixed 

marker,  I A  = intersection of the laser instrument axes, UN = unknown) 

and the undulation computed using eq. (4.2) for the 44 laser stations. 

There are laser stations very close to each other (see for example the 

coordinates of the stations 7051, 7109 and 7886 in Quincy, California, in 

Table 10). It is useful to group those stations under a common name. 

This is shown in Table 11, where the laser stations with distances less 

than 100 km are grouped under the s a m e  name. 

Table 11. Grouping the Laser Stations with Distances L e s s  than 100 km 

f 
HOP 
STA 
HAW 

The distribution 

~ 

STATIONS INCLUDED 
7051,7109,7886 
7062,7110 
7084,7114. 
7085,7115 

7888,7921 
7063,7064,7100,7101,7102,7103,7104,7105 
7120,7210 

7086,7885 

of the 44 laser stations is shown in Figure 3 and 

the distribution of the  11 laser stations with unknown height references 

is shown in Figure 4. The accuracy of the  undulation computed from 

equation (4.2) has not been rigorously computed, since no accuracies 

were available for the orthometric heights nor for the ellipsoidal 

heights. 
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Table 10. Laser Station Coordinates Referred to the OSU GRS (a, = 
6378136.0 m, f = 1/298.257222101) 

. .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
L A T I T U D E  LONGITUDE 

NUM NAME DD MM SS.SSSS DD MM SS.SSSS E L L . ( M )  O R T . ( M )  REF U IJD(M)  

7051 Q U I L A S  
7189 Q U I L A S  
7886 O U I L A S  
7LJG2 S A N D I E  
71 18 I lONLAS 
7802 BEARLK 
7984 OVRLAS 
7114 OVRLAS 
7UB5 GOLFLS 
7 1 1 5  GOLLAS 

7112 PLALAS 
71387 VANLAS 
7038 I iOPLAS 
7321 HOPLAS 
79'34 YUMLAS 

7flO6 F T D h V S  
7 n a 5  F O R L A S  

7E163 S l A L A S  
7 8 6 4  GSFCLS 
71D0 GSFl.00 
71.V1 GSFI01 
7182 GSF102 
7 1 8 3  GSF103 3 9  1 
7184 GSFlg4  3 9  1 
7185 GSF105 3 9  1 

7891 HAYLAS 42 3 7  
7 1 2 8  11UILAS 20 4 2  
7 2 1 8  l1AULAS 2 0  1 2  

71759 PAMLAS 2 8  1 3  

7 0 3 0  YARLAS - 2 9  - 2  

3 9  5 8  
3 9  5 8  
3 9  5 8  
3 2  3 6  
3 2  53 
41 5 6  
3 7  1 3  
3 7  13 
3 5  2 5  
3 5  14  
3 8  4EI 
3 8  4 0  
4 0  1 8  
34  33 
31  41 
3 1  41 
32.- 5 6  
3 9  1 
3 9  1 
3 9  1 
3 9  1 
3 9  1 

_ _  
7943 CRRLAS -35 - 3 7  
7~367 ECILAS 3 2  Z I  
7q.75 F I N L A S  6 8  1 3  
7939 I4ATLAS d B  313 - -  
7835 C R A i A S  4 3  45 
7 7 4 0  r t O L A S  5 8  5 2  
8 3 3 3  r'(30LAS 5 2  1 0  
7434 WETLAS 49 8 
7938 SHOLAS 3 3  34  
7U6l EASTER -27  - 8  
7 8 6 8  GRKLAS 2 1  2 7  
7892 tWJLAS 9 2 3  
7836 SAMLAS -14  -2B 
7121 H U A l i I L  -16  -44 

3 0 . 0 1 2 1  2 3 9  
2 . 6 5 2 6  2 4 3  

2 9 . 9 9 6 5  2 4 3  
0 . 8 9 8 8  2 4 8  

55 .6582 241 
5 7 . 2 0 6 2  241 
2 7 . 9 5 7 3  2 4 3  
5 3 . 8 9 4 4  2 4 3  
3 7 . 2 9 8 7  % 5 5  
3 7 . 3 8 8 7  255 
5 7 . 9 9 5 1  2 5 5  

6 . 3 0 9 6  249 
3 . 2 1 6 6  249 

Z ( J . 9 2 8 5  2 4 5  
1 3 . 3 5 6 1  2 8 3  
1 5 . 0 9 8 1  2 8 3  

1 6 . 1 9 9 1  2 8 3  
1 4 . 3 7 4 1  2 8 3  
14.6.911 2 8 3  
1 7 . 8 7 6 1  2 8 3  
1 4 . 1 5 8 1  2 8 3  
4 8 . 6 4 7 Q  279 
21.683fl  2 8 8  
2 7 . 3 8 8 0  2 0 3  
25.992fl  2 8 3  

- 4 7 . 4 0 4 8  1 1 5  
- 2 9 . 7 5 8 2  1 4 8  

1 3 . 7 5 6 6  2 9 5  
2 . 2 8 2 0  2 4  

5 5 . 7 8 7 1  1G 

2 . 5 5 5 1  0 
4 2 . 2 3 9 2  5 
41.7711 12 
3 3 . 7 1 5 5  1 3 5  

- 5 2 . 1 6 0 0  2 5 8  
3 7 . 7 6 6 9  2 8 8  

- 7 . 5 1 4 0  1 8 9  
-0 .6796 2LJ8 

5 a . 3 ~ 1 ~ 1  23'3 

1 5 . 4 4 5 1  2 8 3  

i6 .87a.o 6 

3 7 . 6 8 7 1  1 6 7  

3 
9 

34  
34  
42 
42 

6 
1 2  
5 9  
5 9  
1G 
29 

7 
7 

47 
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 8  
1 0  
2 3  
30 
4 4  
44 
2 8  
5 7  
2 8  
2 3  
42 
5 5  
2 0  
4 8  
5 2  
5 6  
36  
5 2  
2 8  
16 
5 7  

1 8  . 0 1 8 0  
3 2 . 7 8 1 0  
3 8 . 2 5 8 0  
4 5 . 5 3 7 0  
1 5 . 1 1 3 0  
2 2 . 2 1 5 0  
4 8 . 9  1 7 0  
2 8 . 9 4 9 8  

2 . 4 8 1 8  
2 . 4 7 0 0  

2 6 . 3 3 6 8  
5 7 . 9 7 8 0  
1 8 . 5 0 8 8  
1 8 . 8 3 7 8  
4 8 . 6 0 7 0  
1 9 . 7 9 5 0  
1 8 . 6 0 5 8  
4 7 . 6 3 5 0  
4 2 . 8 3 5 0  
1 8 . 7 9 2 8  
1 8 . 7 9 5 8  
3 6 . 8 3 8 0  
2 0 . 1 5 8 0  
3 9 . 2 9 8 0  
4 4 . 3 3 9 n  
3 8 . 1 0 2 0  
3 8.680LJ 
4 8 . 1 0 7 1  
1 7 .  1 2 4 0  
3 7 . 9 2 7 8  
4 0 . 2 1  1 0  
1 6 . 6 8 6 8  
1 5 . 8 6 4 8  

9 . 8 6 2 8  
3 5 . 1 1 9 8  
4 1 . 9 6 7 8  
1 3 . 1 8 9 8  
5 8 . 9 9 4 8  

5 ..033M 
3 2 . 4 8 6 8  
3 0 . 3 5 7 9  
3 1 . 7 7 8 8  

9 8 9 . 5 2 6 0  
1 8 3 9 . 9 1 5 3  
1 9 6 3 . 9 3 2 8  
1179.15608 
1 1 7 8 . 9 6 4 8  

9 6 6 . 3 7 8 5  
1839.5651 
1 9 6 2 . 3 7 7 6  
1 9 6 2 . 3 3 1 8  
1 5 8 2 . 2  15 1 

2 3 3 5 . 6 6 7 5  
2 3 5 3 . 9  135  

6f l5 .6623 

2 4 2 . 6 6 9 6  
2 0 -  21132 
1 8 . 1 8 9 2  
1 1 . 1 4 6 2  

9 . 3 5 0 2  
1 8 . 9 2 7 2  
1 8 . 8 6 3 2  

1 1 2 9.88118 
1022.0Uff8 

1 9 7 6 . 5  15B 

1 2 0 3 . 8 0 t 0  
9 9 6 .  V55U 

1 0 6 9 . 1 4 5 8  
1 9 8 3 . 1 6 1 8  
1 9 8 3 . 1 6 1 8  

1 8 7 0 . 7 7 0 ~  

1 2 0 3 . 9 5 a o  

151  9 . 9 1  :!fl 
636.4kT.U@ 

2 3 3 7 . 8 6 9 0  

27 1.38Tr3 

51.82G4 
4 3 . 6 4  40 
4 2 . 4 3 3 4  
5 1 . 8 l ' s B  
5 1  .8D3(J 

5 3 . 1  2 m  

10 .9342 43.87fiU 
20.12.u2 53.85317 

-22.6lJD6 6.529fJ 

3 0 6 8 . 7 1 6 2  3048.253.8  
9 2 . 9 4 9 6  1 2 0 .  s n x  

3 8 6 9 . 2 0  7 1 
2 4 2 . 2 9 2 1  
9 4 9 . 0 8 4 8  
-22 - 0 6 0 3  

79 .1 i .06  

3048.790.0 
266.56RU 
929.5nlrn 

9 . 7 5 1 0  
5 9 .  23nu 

9 4 . 4 5 5 8  

5 3 6 . 9 8 6 6  498.52116 
1 3 2 3 . 9 d 8 4  1281.1PIT8 

7 6 . 2 6 3 0  30.58JJn 
49.8Ufr8 

6 6 2 .  8 9  .t I 6 I 4 . 4  4irg 
1 8 2 . 3 6 a 7  6 2 . 4 ~ n q  
1 1 8 . 6 2 6 3  1 2 1 . 8 8 1 0  
- 1 7 . 6 9 9 9  2 4 . 9 4 4 8  

3 3 . 8 9 7 0  
4 9 . 9 8 8 6  
48  - 2 1 9 6  

1 .71fi .U 
15.295(!  
37.9GfIP 

uti 
BN 
8 E! 

B I.1 
B>I 
B t I  
B E l  
BFl  
B 1.1 
B E1 
ut1 u rI 
u II 
BPI 
B PI 
B t I  
at1 
B I I  
B I I  
B E l  
at1 
611 
EFI 
BPI 
I A  
Et1  
Ufl  
BE1 
I n 
U tI 

IJH 
I A  

I A  
BFI 
BPI 
8 E.1 
I A  

B r i  

uti 

uti 

uri 

u r i  

- 1 9 . 2 9 5 2  

- 3 0 .  8 6 2 7  
- 3 2 . 4 7 4 0  

- 1 2 . 5 8 2 2  
- 2 4 . 8 9 7 2  
- 2 4 . 8 4 1 2  
- 2 9 . 6 7 9 5  
- 2 s .  5 7 9 9  
-211.7034 
-2 : .  8 3 8 0  
- 1 .  . 3 9 7 9  

-'-. za15 
- 2 9 . 4 7 3 5  
- 2 8 . 6 3 a 4  
- 3 2 . 9  168  
- 3 3 . 6 3 6 8  
- 3 2 . 4 9 7 8  

-3:. 1 3 7 7  

- 3 3 . 0 8 2 8  
- 3 2 . 8 8 7 8  
- 3 2 . 9 3 3 8  

- 3 % .  9 3 2 8  
- 2 9 . 1 2 3 6  
- 2 7 . 5 5 2 4  

2fl. 4632 
2 0 . 4 8 9 1  

- 2 4 . 2 7 5 9  
2V. 3 8  !8 

- 3 1 . 8 1 1 3  
1 9 . 9 586 
4 6 . 3 8 6 6  
4 2  . 8 4 8 4  
4 5 . 5 8 3 8  
4 4 . 6 5 5 8  
4 7 . 6 5 1  1 
3 9 . 9 6 9 7  
- 2 . 2 5 4 7  - 4 2 . 5 3  4 9 
3 2 . 1 8 1 0  
3 4 . 6 8 5 6  
l f l .  3 5 1 6  
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CHAPTER V 

GRAVITY DATA PROCESSING 

BERMUDA P o i n t  ~g 1 
AUSTRALIA P o i n t  Ag- 2 .  

~ JAPAN lO‘x10’ Ag 1 
EUROPE 6’xlO’ Q 6 

5.1 Pre-processing of t he  Data 

The terrestrial gravity sources available by region are listed in 

Table 12 below (Ag = free-air gravity anomaly, Ag = mean Ag). .The 

third column in Table 12 shows t h e  number of laser stations in the 

corresponding region. 

Table 12. Gravity Sources Available by Region. 

REGION I SOURCE I #  of LASER STATIONS 
UNITED STATES I P o i n t  Arc  I 27 

The gravity sources i n  Australia, Europe, and Japan are  discussed in 

(Despotakis, 1986). The point gravity anomalies in the United States, 

Hawaii and Bermuda have been received in 1983 from the National 

Geodetic Survey; the lO’x10‘ mean anomalies are also described in 

(Ganeko, 1982); and the 6‘xlO’ mean anomalies are also described in 

(Torge et al., 1983). These gravity sources cover only 39 laser stations 

as Table 12 indicates. For five (7061,7068,7092,7096,7121) oceanic stations 

the adjusted GEOS-3 and SEASAT oceanic altimeter data (Liang, 1983) 

49. 
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was used, For these stations an approximate geoid undulation w a s  

computed from the altimeter sea surface heights using a standard least 

squares collocation method using procedures similar to (Rapp, 1985b). 

Numerical details will be given in Chapter 8. 

Based on the error analysis results (Chapter 3, Fig. 1) the capsize 

for the cap contribution computations (first integral t e r m  in eq. (2.14)) 

was selected to be 2'. Thus, within a circle of radius 2" (with the 

center of the circle at the  laser station) sufficient gravity data had to 

exist. More precisely, within the above circle we had to have full 

coverage of mean gravity anomalies so that the numerical integration of 

equation (2.14) would be possible. The gravity anomaly iA to be used in 

(2.14) has to: 

a) Refer to the reference formula of normal gravity implied by the  

constants of the adopted reference ellipsoid (see Chapter 4, eq. 

( p w ;  
b)  Be corrected for atmospheric effect; 

c)  If possible, to be corrected for the terrain efffect. The 

undulation then has to be corrected for the indirect effect (see 

Section 5.2). 

All the given sources (Table 12)  had their free-air anomalies 

referred to t h e  GRS'67 reference formula. The conversion from this 

formula to t he  formula implied by the constants of the OSU GRS will be 

derived if w e  take into account that: 



- Ag1967 - gabs - 7 1 9 6 7  + 9 h 

where free-air gravity anomaly referred t o  the GRS’67 
ASosu : free-air gravity anomaly referred t o  the OSU GRS 
71967 : normal gravity on the GRS’67 el l ipsoid 
7 0 s ~  : normal gravity on the OSU GRS e l l ipsoid 

: free-air gradient of the normal gravity ah 
h : elevation of the station 

The quantities ay/ah-h and g o b s  are the s a m e  for both systems. 

subtracting (5.1) from (5.2): 

Thus, 

Knowing that (International Association of Geodesy, 1971) 

7 1 9 6 7  = 978031.85(1 + a‘s inaO + b‘sinz29) mgal (5.4) 

with a’ = 0.0053024 and b‘ = -0.0000059, 

w e  can w r i t e  (Heiskannen and Moritz, 1967, eqs. (2-116) and (2.105a)) 

7 o s u  = ab GM 11 - 5 3 m - e’ (1 + a‘sin’9 + b’sin229) 14 (5.5) 

assuming that a‘ and b‘ will be the s a m e  as in (5.4) which is correct 

for the decimal digits we  give. We also have: 

and a , f , G M , o  from (4.1). 

We then obtain 

70su = 978032.83(1 + a’s in29  + b’sin22+) mgal 

From (5.3), (5.4) and (5.6), we take: 

Agosu - - Ag1967 + (978031.85 - 978032.83)(1 + 0.0053024Sinz~ 
- 0.0000059sinz29) mgal, or  

AgoSu = Ag1967 - 0.98 mgal 

(5.6) 

(5.7) 
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Thus, from the anomalies referred to the GRS'67 reference formula, we 

have to subtract 0.98 mgal, to convert them to the OSU GRS reference 

formula. 

The next step is to apply the atmospheric correction to (5.7) 

considering the polynomial expansion of the atmospheric correction given 

in Wichiencharoen (1982a): 

6 g ~  = 0.8658 - 9.727*10-'*H -I- 3.482.10-9*Ha ( 5 . 8 )  

where H is the elevation of the station, and 6gA, in mgal, is the 

atmospheric correction computed truncating (5.8) to the second term and 

giving an approximate value fi for the elevation of the station. Then 

the free-air anomalies to be used in equation (2.14) were computed as: 

ii = AgOSU + 6gA (5.9) 

The above procedure applied to both point and mean Ag given from the 

various sources listed in Table 12. 

To determine the coverage of the gravity anomalies surrounding the 

laser stations, windows of A9 = 5' in latitude and Ah = INTEGER(S'/cosO) 

+ 1' in longitude (0: latitude of the laser station) centered a t  the laser 

stations were used. Full coverage and mean anomalies (as it was the 

case with the anomalies surrounding stations 7838 in Japan and 8833, 

7834 in Europe) did not require any further process. Insufficient 

coverage and mean anomalies (as it was  the case with the anomalies 

surrounding stations 7805,7939,7835 and 7840 in Europe) required that 

we fill-in the gaps. For this purpose we  used the OSU86F (Rapp and 

Cruz, 1986b) potential coefficient set up to degree 360 to compute the 
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missing Ag as the point Ag evaluated at the centers of the 6.~10 '  empty 

cells through the formula: 

(5. l o )  

where: GM,a : 
- -  
CnrnsSnrn: 

- 
P ,,,,,( sinb ) : 

r 

x 

An example of 

the constants of the OSU GRS given in (4.1) 

the fully normalized potential coefficients of the OSU86F 
- - 

solution; the c,,, Ca0 and c60 refer to the OSU GRS 

the fully normalized associated Legendre functions; 0 is 

the geocentric latitude of the computation point 

the geocentric radius to the computation point 

the longitude of the computation point. 

a case with insufficient coverage of the 6'xlO' Ag is 
- 

shown in Figure 5 for station 7805 in Finland. The dots represent 

available 6'xlO' and the dashes represent fill-in anomalies using the 

OSU86F field as described above. 

The point gravity anomalies surrounding the laser stations in the 

United States, Hawaii, Bermuda and Australia were  transformed to 2'x2' 

mean anomalies using interpolation techniques (collocation or weighted 

average) that are discussed in Section 5.2. For the application of the  

collocation method using the five closest points it is necessary that the 

matrix ( C i j  t Dij) is non-singular (see Section 5.2, eq. (5.11)). If the 

five closest points are very close to  each other, which was the case for 

m o s t  of the distributions of the given point anomalies, then the above 

matrix becomes singular. To avoid this, a thinning procedure was  

applied to the originally available point anomalies. This procedure w a s  
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Figure 5. Example of Insufficient Coverage of the 6'xlO' 
Surrounding Station 7805 in Finland. Dots Represent 
Originally Available 6' x10' and Dashes Represent Fill-in 
6'xlO' 6 Using the OSU86F Potential Coefficient Set Up to 
Degree 360. 
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a s  follows: For each 2'x2' cell in which the whole area w a s  subdivided; 

one value, the one which w a s  closest to the center of the 2'x2' cell was 

kept. The thinned data set created this way was then examined to 

ensure sufficient coverage. If the coverage was sufficient, the 

prediction of the Z'x2' Ag was done a s  discussed in Section 5.2. A n  
- 

example of such coverage for station 7082 in Bear Lake, Utah is shown 

on Figure 6. The dots represent the point anomalies of the thinned 

data set. If the coverage was not sufficient (i.e. areas larger than 

1.~1. w e r e  completely empty), then 

a) For coastal stations or stations on islands the 0.'125 x 0.'125 

altimeter anomalies of the world data base described in (Rapp, 

1985b) was used to fill-in the empty areas. Examples of this case 

are shown in Figure 7 for a coastal station (station 7887 in 

Vandenberg, California) and in Figure 8 for the  stations 7120,7210 

on the island of Maui. The dots represent point Ag. 

b) For continental stations, for which no altimeter anomalies were 

available, the fill-in anomalies were  generated a t  the centers of 

the missing 2'xZ' cells using eq, (5.10) as described above. 

Figure 9 illustrates an  example of such a case for stations 7888, 

and 7921 in Mount Hopkins, Arizona. The dots represent point 

A g e  - 
A f t e r  t he  fill-in procedures, the 2'xZ' Ag were predicted a s  discussed in 

Section 5.2. The thinning procedure was not applied to the  data 

surrounding station 7067 in Bermuda (see Section 5.3). 
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Figure 6. Example of Sufficient Coverage of Point Ag Surrounding 
Station 7082 in Bear Lake, Utah. The Dots Represent Point 
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37. 

Figure 7. Example of Insufficient Coverage of Point Ag at the Coastline 
Station 7887 in Vandenberg, California. The Dots Represent 
Point Ag. 
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Figure 8. Example of Insufficient Coverage of Point Ag at the Two 
Stations 7120, 7210 in the Vicinity of Hawaii. The Dots 
Represent Point Ag. 
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n 

Figure 9. Example of Insufficient Coverage of Point Ag For the 
Continental Stations 7888, 7921 on Mount Hopkins, Arizona. 
The Dots Represent Point Ag. 
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Some statistics concerning the terrestrial gravity data processing 

are shown in Table 13. The first column is the number or the name of 

the region (in case of groups of stations within the s a m e  region, see 

Chapter 4). The second column is the Ah dimension selected for each 

window surrounding the  laser station. The third column shows the  

number of point or mean Ag available for each region before ((1)) and 

after ( (2 ) )  the  thinning. If no thinning was applied to the data (e.g. 

6'xlO' E data) this column is left blank (*'-I1). The fourth column 

represents the fill-in procedure chosen: A "-'I means that no fill-in 

anomalies were used; "P" means that the fill-in anomalies were taken 

from the OSU86F potential coefficient set and "A" means that the OO.125 

x OO.125 altimeter anomalies w e r e  used to fill-in the gaps. The fifth 

column gives the final gridded f o r m  (or equivalently: the blocksize of 

the mean anomalies) in which the original data were  transformed to for 

the numerical integration. The sixth and seventh columns give the 

variance and the arithmetic mean of the final mean anomalies over the 

sample area. 

For each grid cell the anomaly was  computed from (5.10) using the 

OSU86F potential coefficients up to degree 180 and then the arithmetic 

mean over t h e  sample area -of those anomalies was computed. This mean 

is shown in column eight. Finally, column nine gives the mean elevation 

that was used for each particular window for the atmospheric effect 

computation through equation (5.8). 



Table 13. Information Concerning the Terrestrial 
Processing. 

- 
# OR 

QUI 
SAN 
7082 
OVR 
GOL 
FTD 
7112 
7887 
HOP 
7894 
STA 
7065 
7091 
HAW 
7067 
7805 
793: 
7835 
784c 
8832 
7834 
783E 
709C 
794: 

NAMS 

- 

- 
AA 

D e g s )  
6 
6 
7 
6 
6 
6 
7 
7 
6 
6 
6 
5 
7 
5 
6 
9 
7 
6 
7 
8 
8 
6 
6 
6 - 

I# O F  Ai 

43915 
62506 
18654 
39966 
52428 
12166 
26953 
96744 
13343 
23765 
29561 
43186 
31095 

7 15 
15731 
1859 
1886 
1747 
1804 
2400 
2400 
1080 
11835 
9804 

0 
OR 

13531 
10359 
9882 
14081 
14496 
5961 
11 150 
14345 
5447 
7296 
11705 
5986 
10357 
458 

(2> 

- - - - 
- 

4091 
4730 

:RIDDED 
FORM 
2’x2’ 
2’XZ‘ 
2’X2’ 
Z’X2’ 
2’X2‘ 
2’x2’ 
2‘x2’ 
2’XZ’ 
2’XZ’ 
2’X2’ 
2‘x2‘ 
2’x2‘ 
2’x2‘ 
2 ‘ X Z ’  
Z’X2’ 
6’xlO‘ 
6’xlO‘ 
6.~10‘ 
6’xlO‘ 
6‘xlO’ 
6‘xlO’ 
10’xlO’ 
Z‘X2’ 
2’x2‘ 

V A R  
lrngall] 
1902.29 
1231.22 
1901.87 
2191.67 
2288.04 
518.89 
1353.25 
1462.18 
435.85 
849.12 
513.82 
415.67 
336.75 

10802.81 
705.18 
293.95 
2927.86 
2429.60 
128.03 
344.54 
686.79 
1550.13 

1645.25 
920.58 

- 
X 

[mgal] 
7.93 

-11.21 
5.55 
2.84 

- 6.32 
- 0.38 
16.75 
-13.6 
- 9.07 
-10.94 
- 3.21 
5.57 
0.89 
25.30 
-11.00 
-15.95 
15.33 
9.29 

- 4.16 
- 0.68 
21.91 
22.87 
-11.85 
14.01 
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Gravity Data 

- 
X 

CmgaE 1 
6.13 

- 9.71 
16.26 
2.01 

- 5.70 
4.58 
16.53 
-14.15 
- 7.08 
- 7.28 
- 1.09 
2.79 
2.84 
23.79 
-11.33 
-15.71 
15.39 
8.89 

- 1.87 
1.81 
21 32 
25.42 
-12.75 
17.33 

- - 
H 

500 
500 
1000 
700 
700 
1000 
1000 
500 
1000 
100 
300 
100 
100 
100 
0 

500 
500 
1000 
300 
100 
300 

100 
500 

Tml 

- 
- 
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Some blunders (e.g. point anomalies of 1700 mga l s )  w e r e  found for 

some regions in the western United States, but they were  easily 

removed by applying an editing method (Le. delete the values of the 

point anomalies if they are outside certain specified limits).  Thus the  

conclusion is that editing of the data is necessary, especially when we  

deal with large amounts of data, to avoid any blunders that the data 

may contain. 

5.2 Gravi ty  Predictions 

For the transformation of the randomly distributed data points (see 
- 

Figure 9 for example) into a gridded form of 2’x2’ Ag, predictions of 

the 2’x2’ had to be carried out based on the thinned data covering 

the areas surrounding t h e  laser stations and merged whenever 

necessary with either the altimeter data or the OSU86F anomalies, as 

discussed in the previous Section. Two basic types of prediction 

methods were considered (Cruz, 1983): 

a) Collocation method: The 2’x2’ & w e r e  computed as the point Ag a t  

the centers of the 2.~2‘ cells based on the five closest Ag to the dg to 

be predicted as follows: 

(5.11) 

where: ii is t h e  predicted point value a t  the center of the Z’x2’ ce l l  

( =2 ’ x2 ’ AT) 
Agi is the 5x1 vector of the closest f i v e  anomalies t o  the  

predicted point 
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D i j  is a 5x5 diagonal matrix of the noise of t h e  f ive  data 

points 

Cpj = C,j(+$): 1x5 covariance matr ix  between the prediction 

point and the f i v e  data points 

C i j  = Ci j ($ ) :  5x5 variance covariance matrix between the f i v e  

data points 

$: spherical separation. 

To compute matrices Cpj(q)  and C, j(+$) the covariance function based on 

the Tscherning-Rapp model for the anomaly degree variances (see eq. 

(2.18)) scaled to reflect the variance of the thinned and/or merged point 

data with the mean removed was used. Some test computations were  

carried out using empirical covariance functions but this method is 

computationally extremely expensive, due to the large number of data 

involved (see Table 13), and thus was  not considered for the final 

predictions. 

b) Bjerhammar method (ibid, P. 151: The 2 . ~ 2 '  were  computed as the 

point Ag at the centers of the Z'x2' cells based on the five closest Ag 

to the Ag to be predicted as follows: 
- 

(5.12) 

where: 1 ,  is the distance between the point to be predicted and the 

data point i (power of the prediction = 1). The predictions w e r e  also 

carried out using the  inverse of the square of the distance as  a weight 

(power of prediction = 2 ) :  

(5.13) 
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Figure 10. Gravity Predictions in the Vicinity of Hawaii Using the Five 
Closest Points in A Collocation Method. The Grid Spacing ie 
2 . ~ 2 '  and the Contour Interval 25 mgal. 
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Figure 11. Gravity Predictions in the Vicinity of Hawaii Using the Five 
Closest Points and the Inverse of the Distance as Weight. 
The Grid Spacing is Z ’ x 2 ’  and the Contour Interval 25 mgal. 
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Figure 12. Gravity Predictions in the Vicinity of Hawaii Using the Five 
Closest Points and the In-rerse of the Square of the Distance 
as Weight. The Grid Spacing is 2 . ~ 2 ’  and the Contour 
Interval 25 mgal. 
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h- STATISTICS C-B C-A B-A 
Mean Difference - 0.46 -0.05 0.41 
RMS Difference 2.38 0.97 2.18 
Standard Deviation Difference 2.34 0.97 2.14 
M a x i m u m  Difference 18.41 8.32 10.63 
Minimum Difference -10.63 -4.26 -18.41- 

The following three Figures ( 10-12) illustrate predictions using the 

three different formulas discussed above: (5.11), (5.12) and (5.13) 

respectively, a t  the  laser stations 7120, 7210 in the vicinity of Hawaii. 

The contour interval is 25 mgal. 

On Table 14 we can see the statistics of the differences between the 

Z'x2'  mean anomalies predicted using the three different methods in the 

above region. 

Table 14. Statistics of the Differences Between the Z'x2' Mean Anomalies 
Predicted Using: Equation (5.11) (A), Equation (5.12) (B)  and 
Equation (5.13) (C) for the Vicinity of Hawaii. (See Figures 
10, 11, 12). Units are in mgal; Number of 2'x2' Ag Compared: 
22500. 

From the comparisons of Table 14 w e  can conclude that there is no basic 

difference between the three different prediction methods. Finally, 

method b) with power of prediction = 2 (equation (5.13)) was chosen, 

5.3 Gravity Predictions in the Bermuda Area 

For the transformation of the 15731 available point gravity anomalies 

surrounding the laser station 7067 in Bermuda island (Figure 13) a 

different procedure than the one already .described for the data 

surrounding the other laser stations was  followed. This procedure used 

is as  follows: 
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Figure 13. Location of the 15731 Originally Available Point Anomalies at 
the Laser Station 7067 on the Island of Bermuda. The Dots 
Represent Known Point Anomalies. 
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First, the OO.125 x OO.125 altimeter anomalies were used to fill-in the 

empty area bounded by the limits 33'20'<W35' and 30'<0631'15' in 

latitude and 292'4X<294' and 296'20' ~ 2 9 8 '  in longitude. Then, the 

(unthinned) terrestrial point anomalies within the window 

31'15' <O433'20' and 294'4h<296'20' w e r e  used together with the OO.125 x 

0'.125 anomalies to produce a merged data set. Applying equation (5.13) 

to the merged data set w e  computed Z'x2' anomalies for the whole 

region (30'<O635', 292'6h<298') except for the central window bounded 

by the l imits  32'<0432',6 in latitude and 294'.86X<295'.6 in longitude, 

since the gap that exists within this window (see Figure 13) would give 

unreliable estimates of the 2 . ~ 2 '  anomalies through equation (5.13). 

For this central window the 2'x2' anomalies were  computed from the.  

terrestrial point anomalies only if their distance to the five closest 

points 1 ,  was less than 3' for every i=1,2,3,4,5. If any of t h e  distances 

ii, i=1,2,3,4,5 was greater than or equal to 3' then the 2'xZ' anomaly 

was  taken from a 2'x2' anomaly data set computed from 10360 Ohio State 

adjusted GEOS-3/SEASAT altimeter sea surface heights (Liang, 1983) as 

described in Section 8.4. A total of 35 2'xZ' anomalies filled the  above 

gap- 

The 2 . ~ 2 '  anomaly data set computed a s  above was  then used for 

the computation of the geoid undulation of the laser station 7067. 
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5.4 Terrain Corrections-Indirect Effect  

As it already has been mentioned in Section 2.1, the derivation of 

the Stokes’ equation (equation (2.1)) assumes that no masses external to 

the geoid exist. This is clearly not true for the continents, and thus 

the masses above the geoid have to either be removed from or shifted 

to the geoid. This will result in certain corrections to be applied to the 

computed undulations, known as terrain corrections. For reasons that 

are discussed in (Heiskannen and Moritz, 1967, pp. 151-152) one of the 

most advantageous methods to account for these terrain correction 

computations is the Helmert’s second method of condensation (ibid, p. 

145): The topography is condensed so as to form a surface layer on the 

geoid. The m a s s e s  are shifted along the local vertical and the total 

m a s s  (of the earth) remains numerically unchanged. This produces an 

attraction change to the free-air anomalies, TC, a potential change VA-V, 

of the topography which results to an indirect effect on the  undulation, 

6N1, and a secondary indirect effect on the gravity anomalies (0.3086 * 

6N1) (Wichiencharoen, 1982b). Assuming that the terrain corrections that 

were  given for the point anomalies of the continental United States w e r e  

computed using the  above Helmert’s second method of condensation, (Le. 

they equal the TC t e r m  discussed above), the terrain-corrections and 

the indirect effects w e r e  computed for the continental western United 

States laser stations as follows: To the point free-air anomalies i6 of 

the  thinned data sets (see Section 5.1) corrected due to the change of 

the reference ellipsoid (eq. (5.7)) and the effect of the atmosphere (eq. 

(5.9))’ the terrain correction that w a s  available was added: 

iiTC = ii + TC (5.14) 
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where i i T c  is the terrain-corrected anomaly 

ii is the anomaly of  t h e  thinned data sets 

TC is the available terrain correction 

Then using the thinned data set (corrected for terrain effects through 

equation (5.14)) the 2.~2’ predictions were  carried out as described in 

Section 5.2. This method has the disadvantage that for the missing 

2’xZ’ values no rigorous terrain correction is computed but t h e  terrain 

correction and the value of the free-air anomaly are interpolated as a 

whole from the 5 terrain-corrected anomalies closest to the missing 

value. Then to the computed undulations using the  terrain-correctd 

gravity anomalies from equation (5.14) the corresponding indirect effect 

has to be added. The various models for the indirect effect computation 

are discussed in (ibid, p. 19). The s i m p l e s t  and computationally fastest 

but certainly the less accurate model is the model represented by the 

Grushineky’s formula (ibid, eq. (44)): 

(5.15) 

where 6NI: is the indirect effect on the undulation 

V, : potential of the actual topography 

V, : potential of t h e  condensed topography 

G : the Newton’s gravitational constant 

p : the assumed density of the topographic masses (= 2.67 

gr/cm3 1 

5 : the mean elevation of the laxla region surrounding the  

laser station 

7 : the mean value of normal gravity (= 979800 mgal) 
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Table 15 shows the number or the region name of the laser stations 

of the western United States; the maximum terrain correction and the 

arithmetic mean of the terrain correction that was computed from the 

thinned data sets; the mean elevation K of the l*xl* surrounding the 

laser station; and the indirect effect to be added to equation (2.14) if 

the anomalies i i  to be used in the first integral t e r m  of (2.14) are taken 

from (5.14). 

Table 15. Information Related to the Terrain Correction and Indirect 
Effect for the Western United States Laser Stations. 

NAME OR TERRAIN CORE IiiFEZ 
SAN 
7082 
OVR 
GOL 
FTD 
7112 
7887 
HOP 
7894 

75.4 
57.5 
81.5 
75.4 
59.4 
82.1 
75.7 
85.8 
74.7 

:TION (mgal) 
m e a n  
4.33 
2.64 
3.72 
5.19 
4.97 
0.99 
3.91 
3.49 
1.63 
1.97 

The secondary indirect effect on the 

neglected. 

K(m> 
1673 
729 
2012 
2363 
674 

. 1410 
1520 
100 
1411 
122 

6NT (m) 
-0.16 
-0.03 
-0.23 
-0.32 
-0.03 
-0.11 
-0.13 
-0.00 
-0.11 
-0.00 

anomalies (= 0.3086 6NI) was 



CHAPTER V I  

ELLIPSOIDAL CORRECTIONS 

Our derivations for t h e  ellipsoidal corrections for all the four 

methods given here follow similar lines as in (Rapp, 1981a). A general 

equation is given for all the four methods, and the ellipsoidal. 

corrections for the  traditional methods of Stokes’ and Meissl’s 

modification result a8 two special cases of the above general equation, 

a s  it will be shown later in this Chapter. 

The general equation (2.3) that is equivalent to the original Stokes’ 

equation (2.1) is the geoid solution of the  boundary value problem and 

is in spherical approximation. Thus the gravity anomaly Ag in (2.3) 

should be substituted w i t h  the spherical part of the anomaly, Ago, where 

(Morite, 1980, equation (49-21)): 

Ag = Ago + e2Ag1 

m 

with Ago = 1 Ag4 
n = O  

m 

Agl = 1 Agf, 
n = O  

(6 .3)  
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1 3(n-3)(n-m-l)(n-m) 
2(2n-3)(2n-1) knm = - 

- n3-3mzn-9nz-6m2-10n+9 
Anm - 3(2n+3)(2n-1) 

- -  (3n+5)(n+m+Z)(n+m+l) 
P n m  - 2(2n+5)(2n+3) 

The "spherical" undulation from equation (2.3) is (ibid, equation 

49-22) : 

(6.10) 

(6.11) 

The ellipsoidal form of the equation (2.3) is then (ibid, equation 

(49-26) ) : 

Nf = NO + 6N (6.12) 

(6.13) with 6N = e z ( z  1 3  - 5 sin2+]No 

No is an approximate value of the undulation which can be taken to be 

the same for all methods, and 0 is the geodetic latitude of the 

computation point. 

Equation (6.12) can be rewritten using (6.11) and (6.1) as 
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- - -& 11 Si (cos$)(Ag-ezAgl)du + 11 Si (cos$)AgOdu 
47v 6, 4%ec 

+ 6N - E jJ Si(cos$)Ag'de 
47v u, 

(6.14) 

The first integral term of equation (6.14) is to be computed from the 

terrestrial gravity data and the next three integral terms and 6N will be 

computed from the given set of potential coefficients. 

Thus (6.14) can be rewritten using equation (2.5): 

- JI Si(cos$)Agldu 
@ C  

4 v  (6.15) 

Choosing 5 < M (see Chapter 3), equation (6.15) can be written: 

- Rea 47w JI Si(cos*)Ag1du (6.16) 
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Note that the  harmonics Agz given by (6.4) will correspond exactly to 

igt of equation (2.14) if the geocentric latitude (6 instead of the geodetic 

latitude 4 will be used a s  an argument for the associated Legendre 

functions (Rapp, 1981a, equations (25, (26)). In this case, the 

coefficients 

and (6.16) can be written (6 < M) 

n 

m= 0 
* 1 (Cn,cosmh+S,,sinmA)Pnm(sin9) 

+ 6N - Rea JI Si(cosq)Ag'da 
4v ac 

or  

(6.17) 

(6.18) 

Nf = f i y  + 6N + 6Ni (6.19) 

is the spherical part  of the undulation computed for each of where 6? 

the four methods as  already discussed in Chapter 2. Also: 

We now evaluate the integral of equation (6.20) 

(6.20) 
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n 
(6.21) = - ea M (Q,,-Xi,) C (G,,,,COS~~+ Hn,sinmh)Pnm(sin*) 27 n=o m= 0 

Using equation (6.19), (6.20) and (6.21) we can write equation (6.18) 

as : - 

G M "  + -  1, Q i  . (n- l )  [:] 9 (Cn,cosmA+S,,sinmh)Pnm(sinb) 2~ n=n+l m= 0 

ez M n 
+ - (Q,,-Xi,) E (Gn,cosmA+Hn,sinmA)Pnm(sinb) 
27 n=o m= 0 

(6.22) 

Equation (6.22) is the desired equation of the geoid undulation 

computation taking into account the ellipsoidal corrections for all the 

four methods. Notice that the  fourth correction t e r m  (6Ni ) of equation 

(6.22) arises from the fact that the ellipsoidal effect ezAgl has to be 

+ ez [z 1 3  - sinz+]N, 

removed from the terrestrial anomalies igT,  whereas the f i f th  correction 

term (6N) arises from the ellipsoidal correction ea( 1/4-3/4sinaO)No to the 

spherical undulation N? itself. Taking i=l (Stokes' method) and starting 

the summation of the second term of the right-hand side in equation 

(6.22) from 2, w e  take 
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ea 14 n + - 1 (Q,,-X,,) C (Gn,cosmh+Hn,sinmX)Pnm(sinb) 
2~ n=o m= 0 

+ e  2 [i - $ sin2+]No (6.23) 

Taking in to  account t h e  r e l a t ionsh ips  (2.35), (2.36) and (2.39), w e  have 

+ ea (a 1 - sin'O]N0 (6.24) 

Equation (6.24) is exactly t h e  s a m e  as equation (31) derived in (ibid, p. 

10845). 

Furthermore for i=2 (Meissl'a method) and  starting t h e  summation of 

the  second t e r m  of t h e  right-hand s ide  in equation (6.22) from 2, we 

take: 
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(6 .25)  

Taking into account the relationships (2.47), (2.53), (2.57) and (2.59) we 

have: 

+ ea [i - 2 3 sinz4]No 

N& = - (S(cosJI)-So)igTda 4mf 

G M "  + -  1 Qzn(n-l) (:In (C,,cosmh+Sn,sinmh)Pn~(sin6) 
2r7 n = 2  m= 0 

+ ea (z 1 - 3 sina+]No ( 6 . 2 6 )  

Equation (6.26) is exactly t h e  same as equation (38) derived in (ibid, p. 

10846). 

The equations for the new methods follow in a s i m i l a r  way for i=3 

(Molodenskii's method) and i=4 (modified S joberg's method) from the 

general equation (6.22). 

To numerically compute the ellipsoidal corrections the OSU86F 

potential coefficient set IC,,, Snm} up to degree M=36 was used. The 

numerical evaluation of the term 6N was done using an approximation of 

No for all methods taken from 

(6 .27 )  
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The numerical evaluation of the t e r m  6N, w a s  done as follows: First, 

the coefficients {A,,, B,,,,,} were  computed using equation (6.8) with {K,,, 

L,,} = (0, 0) (equation (6.17). Then, the coefficients (G,,,, J&,,,} w e r e  

computed from (6.6) and (6.7). Finally, the t e r m  6N1 was  computed from 

equation (6.21) for all the four methods using the Fourier coefficients 

X i , ,  Q i n ,  W i n  of each method that have been derived in Chapter 2. 



CHAPTER VI1 

LOCAL AVERAGE CORRECTION 

The terrestrial mean anomalies i g T  that are used inside the integral 

of equation (2.14) (igT + TC in case that terrain corrections have been 

computed, i g T  otherwise), can be expresaed as: 

i g T  = igs  + 6(Ags) (7.11 

where igs are the mean anomalies implied by the potential 

coefficient set, used up to degree M 

6(AgS) are the errors of the mean anomalies due to the omission 

and commission errors of the given potential coefficients. 

Assuming that the potential coefficients are errorless, the error 

6(AgS) will be due only to the omission errors (truncation of the given 

field a t  degree M). Taking the average over a spherical cap a, of both 

sides of eq. (7.1), we obtain: 

For a high degree field (M 180, or M = 360) the average of the 

omission errors over a cap of radius on the order of 2' or larger can 

be realistically considered zero. This can be justified by the fact that 

the average of a short wavelength signal (as the omission error 6(Ags) 

for a high degree field is) over an area of much longer wavelength 
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(capsize of 2') is expected to be zero. 

L J J  6(Ags)du = o S 
=C 

and from (7.2) and (7.3) we must have: 

(7.3) 

Condition (7.4) expresses the fact that the  mean over the cap of 

the terrestrial anomalies should equal to the mean over the cap of the 

anomalies implied by the potential coefficient set. Of course, if the mean 

w a s  taken over the whole earth, then, ideally, both terms of the 

left-hand side of (7.3) would be zero and condition (7.4) would hold 

(Rapp, 1975): 

2 JJ igldu - 1 JJ  igsdu = o - o = o 
U 

4n 
U 

4n 

In  real i ty  

(7.5) 

and Agg = I( igPdu ( 7 . 8 )  
U C  

For a numerical verification of (7.6) see columns 7 and 8 of Table 13, 

where 

5 p Ag& and GP 1 Agg 

If we add to the terrestrial anomalies igT the difference Agg - Agi = d,  

then condition (7.4) is met: 
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S JJ (igf+d)du - IJigsdu 
@C @C 

= AgJ + Agg - AgJ - Agg = 0 

The difference d = Agg - AgJ ie a constant correction to be added to 

the terrestrial anomalies igT  used to compute the cap contribution. The 

corresponding effect on the  geoid undulation can then analytically be 

computed as follows: 

From equation (2.14) with  isT  t d instead of i g T  and 6 < M we 

obtain: 

= if + &NO (7.9) 

where f i ,  is the geoid undulation computed using each of the four 

methods as discussed in Chapter 2. The local average correction t e r m  

i8: 
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6NP = Si(cos$)ddu 
4v u, 

From equation (2.11), for  n=O we t ake :  

Similarly, since Xi, are the Fourier coefficients of Si(cos$), 

(7.10) 

(7.11) 

(7.12) 

Substituting (7.11) and (7.12) into (7.10), we obtain: 

Equation (7.13) is the general expression for the local average 

correction, and it can also be used to analytically compute the effect on 

the undulation due to a constant correction to the gravity data i s T  (e.g. 

a forgotten atmospheric correction). 

For each method, equation (7.13) can be reduced as follows: 
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For i=l (Stokes’ method): 

For i=2  (Meissl’s method) 

= 3 ( ( A g g - A f ! f & ~ ( x z o - Q z o ~  27 

(7.14) 

(7.15) 

(7.16) 

(Agg- A d )  (w40+Q40 (7.17) 

The numerical values of Ql0, Q10+W20, w30 and WlotQd0 for $2’, ?i=20, 

- R 
2Y 

- - -  

M=180, error models (3.1) and (3.2) for the potential coefficients and the 

terrestrial data respectively and model (2.18) for the anomaly degree 
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variances, are: 

Q1o = -0.075620 
Qzo+Wzo = -0.035852 
Wao = -0.053435 
Q 4 O + W 4 0  = -0.0583024 

(7 .18 )  

Then, the corresponding values ai = (R/2r)(Qrn+Wrn) in m/m$al of the 

corrections 6NO are (R = 6371000 m and 7 = 979800 mgal). 

a, = 0.245854 m/mgal 
az = 0.116561 m/mgal 
as = 0.173727 m/mgal 
a4 = 0.189550 m/mgal 

(7 .19)  

We can see that Meissl’s method is the least sensitive and Stokes’ 

method is the most sensitive to a constant correction. Molodenskii’s and 

modified S jijberg’s methods have sensitivities that are between the 

Stokes’ and Meissl’s methods. For the numerical evaluation of 6N7, the 

values of Agg, Agz were taken from Table 13. 

C -2- 



CHAPTER VI11 

NUMERICAL RESULTS AND STATISTICS 

8.1 Computational details 

As discussed in Chapter 5 the numerical integration of the functions 

S i  (cosq) w a s  computed using 2'x2', 6'xlO' and lO'x10' mean terrestrial 

igT. The selected capsize was 2' and the functions Si (cos$) were  first 

tabulated a t  a spherical interval of 1" out to a spherical distance of 3". 

Then t h e  evaluation of S,(cos$) for each block was done by numerical 

integration as follows: Each block was  subdivided into elements 

depending on the separation $ between the computation point (laser 

station) and the cell, For 9=4' the  number of subdivisions was  64; for 

4'<$=8' we had 16 subdivisions; for 8'<$412' the  subdivisions were 4 

and for 12'<$62" the evaluation was  made at the center point of the cell 

(Engelis e t  al., 1985a). The general equation including ellipsoidal 

corrections (eq. (6.22)) was applied for all the methods. The outer zone 

contribution (second and third t e r m  in (6.22)) w a s  computed from the 

OSU86F potential coefficients taken up to degree M=180. Since there is 

no zero or first degree potential coefficients in the OSU86F field the 

summations started from 2, although the theoretical formulas developed 

start their summations from zero. The correct procedure would be to 

start our summations from zero. The ellipsoidal corrections were  

computed up to degree M=36 as mentioned in Chapter 6. The models for 
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the error degree variances of the  terrestrial anomalies and the anomalies 

implied by the potential coefficients are important for the error analysis 

of the four methods, but they also play a very important role for t h e  

modified S jSberg’s method, since for this method the Fourier coefficients 

X,,, W,, and Q4, are based on them. The model for the anomaly error 

degree variances of the potential coefficient set was  taken from equation 

(3.1). The models for the terrestrial anomaly error degree variances 

were  selected for each region as Table 16 shows: 

Table 16. Models for the Terrestrial Error Anomaly Degree Variances 
Selected by Region. 

R e  ion Model 
UNITED STATES B.l 
BERMUDA 
AUSTRALIA 
EUROPE A 8n=Bn (6‘ ~ 1 0 ’  1 1 
JAPAN 10‘xlO’ 

Finally the number ii of harmonics that w e r e  removed from the Stokes’ 

function for the Molodenskii’s and the modified S joberg’s method was 

taken to be 20 (<M=180). For comparison purposes the  point undulation 

of the  laser station was computed using the OSU86F potential 

coefficients in equation (6.23) with M=360. 

8.2 Numerical results 

Table 17 shows the results of the undulation computations with the  

Stokes’ method. The first  and second columns show the number and the 

name of the laser stations; the third column shows the reference for the 

ellipsoidal height of the stations; the next t h r e e  columns represent the 

three components of the undulation (see equation (6.22)); cap 

contribution, NC, potential coefficient contribution (outer zone) NP, and 
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Table 17. Geoid Undulations of the Laser Stations Using Stokes' Method 
(Units are in meters). 

785 1 
7189 

7862 

7882 
7884 
7114 

71 15 

7886 

7118 

7985 

78336 
7ea5 
7112 
7897 
7888 
7921 
7894 
7863 
7864 
7 l8U 
7181 
7182 
7 183 
7184 
7185 
7869 
789 1 
7125 
72lU 
7890 
7943 
7867 
788s 
7939 
7035 

0833 
7834 

784n 

7838 

OU I L A S  

ou I L A S  
S A N D I E  
HONLAS 
BEARLK 
OVRLAS 
OVR L A S  
GOLDLS 
COLLAS 
F TDAVS 
FORLAS 

ou I LAS 

PLALAS 
VANLAS 
HOPLAS 
HOPLAS 
YUMLAS 
STALAS 
GSFCLS 
CSF 188 

H U I i A ?  
MAULAS 
VARLAS 
ORRLAS 
B D I L A S  
F l N L A S  
HATLAS 
CRALAS 
RGOLAS 
KOOLAS 
WETLAS 
SHOLAS 

EM 
EM _. . 
UN 
EM 
8M 
EM 
EM 
EM 
BM 
B H  
B H  
EM 
EM 
UN 
UN 
UN 
UN 
EM 
EM 
EM 

tSFl81 EM 
tSFl82 EM 
CSF183 BH 
CSFl84 8 H  
CSF185 EM 
RAMLAS EM 
HAVLAS EM 

BM 
I A  -. . 
8H 
UN 
8M 
I A  
UN 
UN 
UN 
UN 
I A  
UN 

2.79 
2.79 
2.79 
-1.41 
-8.33 
1.75 
1.22 
1.21 

-1.76 
-1.85 
1.51 
1.51 
2. 48 
-2.68 
-2.81 
-2.82 
-4.34 
8.84 
8.84 
8.82 
8.82 
8 . 8 4  
8.84 
8.83 
8.84 
1.82 
8.54 
28.77 
28.88 
-1 .80 
7.47 
5.69 
-2.54 
9.91 
6.98 
-2.46 
-8.82 
4.49 
6.85 

-27.12 
-27.13 
-27.13 
-33. E8 
-33.86 
-18.74 
-28.63 
-28.62 
-38.17 
-38.31 
-23.69 
-23.69 
-21.37 
-33.43 
-28.46 
-28.46 
-38.88 
-33.26 
-33.26 
-33.26 
-33.26 
-33.26 
-33.26 
-33.26 
-33.26 
-38.25 
-29.54 
-1.83 
-1.83 

-23.77 
1 1  . 8 8  

-37.73 
23.87 
36.63 
44.93 
48.19 
44.14 
42.17 
32.85 

-8.81 
-0.81 
-8.81 
-8.81 
-8.81 
8.88 
-8.81 
-8.81 
-8.81 
-8.81 
8.81 
8.81 
8.88 
-8.81 
8.88 
8.88 
-8.81 
-8.81 
-8.81 
-8.81 
-8.81 
-8.81 
-8.81 
-8.81 
-8.81 
8.81 

-8.82 
8.88 
8.88 
B.#B - 
8.82 
-8.81 
-8.81 

8.81 
8.82 
8.81 
8.01 
8.02 
8.83 

-24.35 
-24.35 
-24.35 
-35.38 
-33.39 
-16.99 
-27.42 
-27.42 
-31.94 
-32.16 
-22.17 
-22.17 
-18.96 
-36.12 
-38.48 
-38. 48 
-34.34 
-33.23 
-33.23 
-33.25 
-33.25 
-33.23 
-33.23 
-33.25 
-33.23 
-29.22 
-29.82 
18.93 
18.96 

-24.77 
16.57 

-32 .85 
28.53 
46.55 
51.93 
45.75 
44.13 
46.68 
38.93 

-23.64 
-23.65 
-23.65 
-34.22 
-32.78 
-15.16 
-26.29 
-26.38 
-31.78 
-31.84 
-21.36 
-21.36 
-18.28 
-36.47 
-29.48 
-29.48 
-33.56 
-33 .88  
-33.88 
-33.89 
-33.89 
-33.88 

-33.88 
-33.88 
-29.52 
-28.6 1 
13.82 
13.82 

-25.82 
20.36 

-35.23 
28.54 
45.66 
51 .84 
46.86 
44.88 
47.82 
37.68 

- 3 3 . 8 8  

-22.57 
-22.59 
-19.38 
-32.47 
-38.86 
-12.58 
-24.98 
-24.84 
-29.68 
-29.58 -28.78 

-28.83 
-17.48 
-31.14 
-2.28 

-29.47 
-28.63 
-32.92 
-33.64 
-32.58 
-33.88 
-32.89 
-32.93 
-32.94 
-32.93 
-29.13 
-27.55 
28.46 

-24.28 

-31.81 
19.95 
46.39 
42.85 

44.66 
47.65 
39.97 

28.49 

28.38 

45.58 

Table 18. Geoid Undulations of the Laser Stations Using Meissl's Method 
(Units are in meters). 

----__- 
N?M 

785 1 
7189 
7886 
7862 
71 18 
7882 
788 4 
7114 
7885 
7115 
7886 
7885 
7112 
7887 
7888 
7921 
7894 
7863 
7864 
7 1D8 
7181 
7182 
7183 
7184 
71C5 
7869 
769 I 
7128 
7218 
7898 
7943 
7867 
7885 
7939 
7835 
7848 
8833 
7834 
7838 

------- 
-_---------- 

NAME REF 

O U I L A S  EM 
O U l L A S  EM 
O U I L A S  UN 
S A N D l E  BH 
HONLAS 8M 
BEARLK EM 
OVRLAS EM 
OVRLAS EM 
COLDLS BM 
COLLAS 8M 
F T D A V S  EM 
FORLAS EM 
PLALAS EM 
VANLAS UN 
HOPLAS UN 
HOPLAS UN 
YUHLAS UN 
STALAS 8 M  
C S F C L S  EM 
CSFl98 BM 
GSFl8l EM 
CSFIBZ BM 
CSF183 EM 
GSFl84 EM 
tSFl85 8M 
RAMLAS EM 
HAVLAS EM 
M U I L A S  EM 
MAULAS I A  
VARLAS EM 
ORRLAS UN 
B D I L A S  EM 
F l N L A S  I A  
MATLAS UN 
CRALAS UN 
RCOLAS UN 
KOOLAS UN 
U E T L A S  I A  
SHOLAS UN 

------------ 
------- 

NC 

1.73 
1.73 
1.73 

-8.  8 5  
1.18 
8 . 8 8  
8.92 
8.91 
-1.31 
-1.25 
1.59 
1.59 

-8.18 
-8.73 
- 8 . 8 8  
-8.81 
-2.14 
8 . 8 6  
8.86 
8.84 
8.84 
8 . 8 6  
8.86 
8 . 8 5  
8.86 
8 . 5 8  
8.49 
14.78 
14.73 
-8.87 
4.44 
6.63 

-8.53 
6.25 
5.82 

-1.53 
- 8 . 8 6  
2.28 
4.79 

------. 
.-------- 

NP 

-26 .87 
-26.87 
-26.87 
-34.85 
-34.85 
-16.44 
-28.58 
-28.50 
-38.58 
-38.72 
-23.23 
-23.23 
-18.68 
- 3 5 . 4 6  
-29.26 
-29.26 
-31.71 
-33.88 
-33.88 
-33.88 
-33.88 
-33.88 
-33.88 
-33.88 
-33.88 
-38.84 
-29.19 

3.21 
3.2B 

-24.21 
14.72 

-38.72 
21.20 
48.12 
46.61 

44.55 
44.65 

.-------- 

47.48 

34.38 

---------- 
8.88 
8.88 
8.88 
8.88 
8.88 
8.88 

' 8.88 
8.88 
8.88 
8.88 
8.88 
8.88 
8.88 
8.88 
8.88 
8.88 
8.08 
-8.81 
-8.81 
-8.81 
-8.81 
-8.81 
-8.81 
-8.81 
-8.81 
8.88 

8.88 
I 8.88 

8.88 
8.81 
-8.81 

I 8.88 
8.88 
8.81 

I 8.81 
8.81 
8.81 

I 8.81 

r -8.01 

---------- 
-24.34 
-24.34 
-24.34 
-34.98 
-32.87 
-16.36 
-27.59 
-27.59 
-31.81 
-31.97 
-21.64 
-21.64 
- 1 8 . 7 7  . 
-36.19 
-38.87 

-33.83 
-33 . 8 3  
-33.85 
-33.85 
-33.83 
-33.83 
-33.84 
-33.83 
-29.53 
-88.71 
17.91 
17.94 

-25 . 8 8  
19.17 

-32.18 
28.67 
46.37 
51.83 
45.88 
44.49 
46.94 
39.18 

-38.87 
-33. a6 

-23.64 
-23.65 
-23.65 
-34.22 
-32.78 
-15.16 
-26.29 
-26.38 
-31.78 
-31.84 
-21.36 
-21.36 
-16.28 
-36.47 
-29.46 
-29.18 
-33.56 

-33.88 
-33.89 
-33.89 
-33.88 
-33.08 
-33.88 
-33.88 
-29.52 
-28.6 I 
13.82 
13.82 

-25.82 
28.36 

-35.23 
28.54 
45.66 
51.04 
46.06 
44.88 
47.82 
37.68 

- 3 3 . 8 8  

-22.57 
-22.59 
-19.38 
-32.47 
-38.86 
-12.58 
-2 4. 9 8  
-24.84 
-29.68 
-29.58 
-28.78 
-28.83 

-31.14 
-2.28 

-29.47 
-28.63 
-32.92 
-33.64 
-3:. 58 
-33.88 
-32.89 
-32.93 
-32.94 
-32.93 
-29.13 
-27.55 . 
28.46 
28.49 

-24.28 
28.38 

-31.81 
19.95 
46.39 
42.85 
45.58 

-17.48 

44.66 
47.65 
39.97 
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ellispoidal correction NE ( 6 N 1 t 6 N  t e r m s  of eq. (6.22)). For the 17 laser 

stations in the Western United States the NC includes the cap 

contribution using terrain-corrected gravity anomalies and the indirect 

effect 6 N 1  (see eq. (5.15)): 

NC = 11 (igT+TC)S(cos$)da + 6N1 
4~ a, 

In Tables 17 through 21 the “NC” column will always be given by 

(8.1) for the various modifications of the Stokes’ function Si (cos$), 

unlesa otherwise stated. The seventh colunm (N) is the total undulation 

computed using the OSU86F set up to M-360 (equation (6.27)). Finally, 

the last column is the value of the undulation computed from equation 

(4.2) (Ellipsoidal minus orthometric height). Units are  in meters. Tables 

18, 19 and 20 show the results for Meissl’s, Molodenskii’s and modified 

S jiiberg’s methods and their description is identical with the description 

of Table 17 above. 

Table 21 summarizes the results of the four methods by region: The 

first two columns show the number and name of the  laser station; 

columns three to six show the total undulation computed using the four 

different methods: Stokes’, Meissl’s, Molodenskii’s and modified S joberg’s 

method reepectively; the seventh column shows the height reference; the  

eighth column shows the value of the undulation using the OSU86F set 

as above and the last column shows the value of the undulation 

computed from equation (4.2). 
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Table 19. Geoid Undulations of the Laser Stations Using Molodenekii’s 
Method (Units are in meters). 

, - - - - - - - - -_-_-- - - - -______ 

NAME REF NC 

8M 2 . 2 0  
BM 2 . 2 0  
UN 2 . 2 0  
8M - 8 . 6 5  
8M 0 . 5 1  
8M 0 . 8 2  
BM I . 0 4  
BM I . 0 3  
8M - 1 . 5 1  
BM - 1 . 5 1  
8M 1 . 5 5  
EM 1 . 5 5  
BM 0 . 9 6  
UN - 1 . 5 9  
UN - 1 . 3 4  
UN - 1 . 3 4  
UN - 3 . 1 1  
BM 0 . 4 9  
BM 8 . 4 9  
BM 0 . 4 8  
8M 0 . 4 8  
8M 8 . 4 9  
BM 0 . 4 9  
BM 0 . 4 8  
8M 8 . 4 9  
BM 0 . 7 3  
BM 0 . 5 1  
BM 1 7 . 3 6  
I A  1 7 . 4 0  
8M - 0 . 8 3  
UN 5 . 7 7  
8M 6 . 2 1  
I A  - 1 . 4 2  
UN 7 . 8 6  
UN 5 . 8 7  
UN - 1 . 9 4  
UN - 0 . 8 5  
I A  3 . 2 6  
UN 5 . 7 0  

.--------- 
NP 

- 2 6 . 5 3  
- 2 6 . 5 3  
- 2 6 . 5 3  
- 3 4 . 4  1 
-33.60 
- 1 7 . 4 6  
- 2 8 . 5 5  
- 2 8 . 5 5  
- 3 0 . 3 6  
- 3 0 . 5 4  
- 2 3 . 4 3  
- 2 3 . 4 3  
- 1 9 . 8 2  
- 3 4 . 5 6  
- 2 8 . 9 1  
- 2 8 . 9 1  
- 3 0 . 9 6  
- 3 3 . 6 0  
- 3 3 . 6 8  
- 3 3 . 6 8  
- 3 3 . 6 8  
- 3 3 . 6 8  
- 3 3 . 6 8  
- 3 3 . 6 8  
- 3 3 . 6 0  
- 3 8 . 1 3  
- 2 9 . 3 4  

1 . 8 8  
1.80 

- 2 4 . 0 1  
1 3 . 1 2  

- 3 8 . 2 8  
2 2 . 8 3  
3 8 . 5 9  
4 5 . 9 9  
4 7 . 7 5  
4 4 . 3 7  
4 3 . 5 5  
3 3 . 3 5  

. - _ _ _ _ _ _ _ _  
----------------- 

NE n 
-8.01 - 2 4 . 3 4  
-8.81 - 2 4 . 3 4  
-8.81 - 2 4 . 3 4  
8.80 - 3 5 . 0 7  
0.80 - 3 3 . 1 0  
8.08 - 1 6 . 6 4  

-8.81 - 2 7 . 5 2  
-8.81 - 2 7 . 5 2  
-8.01 - 3 1 . 8 7  
0.80 - 3 2 . 0 6  
0.81 - 2 1 . 8 7  
8.81 - 2 1 . 8 7  
8.80 - 1 8 . 8 6  

- 8 . 0 1  - 3 6 . 1 6  
8.08 - 3 0 . 2 5  
8.80 - 3 0 . 2 5  
8.80 - 3 4 . 8 7  

-8.01 - 3 3 . 1 2  
-8.01 - 3 3 . 1 2  
-8.01 - 3 3 . 1 4  
- 0 . 8 1  - 3 3 . 1 4  
-8.81 - 3 3 . 1 2  
- 0 . 0 1  - 3 3 . 1 2  
-8.81 - 3 3 . 1 3  
- 0 . 8 1  - 3 3 . 1 2  
8.81 - 2 9 . 3 9  

- 8 . 8 1  - 2 8 . 8 5  
0.80 1 8 . 3 6  
8 . 8 0  1 8 . 3 9  
8.08 - 2 4 . 8 4  
0 . 0 1  1 8 . 9 1  

- 8 . 0 1  - 3 2 . 0 8  
- 8 . 0 1  2 0 . 6 8  
8.00 4 6 . 4 5  
0 . 0 1  5 1 . 8 7  
8.01 4 5 . 8 1  
8 .08 4 4 . 3 2  
8.01 4 6 . 8 2  
8 . 0 2  39.117 

----------------- 
------------------ 

O S U 8 6  F E L L - O R T  

- 2 3 . 6 4  - 2 2 . 5 7  
- 2 3 . 6 5  - 2 2 . 5 9  
- 2 3 . 6 5  - 1 9 . 3 0  
- 3 4 . 2 2  - 3 2  47  
- 3 2 . 7 8  - 3 0  8 6  
- 1 5 . 1 6  - 1 2  5 8  
- 2 6 . 2 9  - 2 4  9 0  
- 2 6 . 3 0  - 2 4  8 4  
- 3 1 . 7 0  - 2 9  6 8  
- 3 1 . 8 4  - 2 9  5 8  
- 2 1 . 3 6  - 2 8  7 8  
- 2 1 . 3 6  - 2 0  8 3  
- 1 8 . 2 8  - 1 7  4 0  
- 3 6 . 4 7  - 3 1  14 
- 2 9 . 4 8  - 2  2 0  
- 2 9 . 4 8  - 2 9 . 4 7  
- 3 3 . 5 6  - 2 8 : 6 3  
- 3 3 . 0 8  - 3 2 . 9 2  
- 3 3 . 8 8  - 3 3 . 6 4  
- 3 3 . 8 9  - 3 2 . 5 0  
- 3 3 . 0 9  - 3 3 . 0 8  
- 3 3 . 8 8  - 3 2 . 8 9  
- 3 3 . 8 8  - 3 2 . 9 3  
- 3 3 . 0 8  - 3 2 . 9 4  
- 3 3 . 8 8  - 3 2 . 9 3  
- 2 9 . 5 2  - 2 9 . 1 3  
- 2 8 . 6 1  - 2 7 . 5 5  

1 3 . 8 2  2 0 . 4 6  
1 3 . 8 2  2 0 . 4 9  

- 2 5 . 8 2  - 2 4 . 2 8  
2 0 . 3 6  2 0 . 3 3  

- 3 5 . 2 3  - 1 1 . 8 1  
2 8 . 5 4  1 9 . 9 5  
4 5 . 6 6  4 6 . 3 9  
5 1 . 0 4  4 2 . 8 5  
4 6 . 0 6  4 5 . 5 9  
4 4 . 8 8  5 4 . 6 6  
4 7 . 0 2  4 7 . 6 5  
3 7 . 6 0  3 9 . 9 7  

------------------ 

Table 20. Geoid Undulations of the Laser Stations Using Modified 
Sjoberg’s Method (Units are in m e t e r s ) .  

7P5 1 
7 1 0 9  
7 8 8 6  
7 0 6 2  
7 1 1 0  
7 8 8 2  
7 0 8 4  
7 1 1 4  
7 0 8 5  
7 1 1 5  
7 0 8 6  

7 1 1 2  
7 8 9 7  
7 8 8 8  
7 9 2 1  
7 8 9 4  
7 8 6 3  

7 1 0 8  
71R1 
7 1 8 2  
7 1 8 3  
7 1 0 4  
7 1 0 5  
7 8 6 3  
7 8 3  I 
71-78 
7 2 1 8  
7 8 9 0  
7 9 4 3  
7 0 6 7  
7 8 0 5  
7 9 3 9  
7 8 3 5  
7 8 4 8  
8 8 3 3  
7 8 3 4  
7 8 3 8  

7 8 8 5  

7 8 6 4  

O U I L A S  
O U I L A S  
O U I L A S  
SAND I E 
MONLAS 
BEARLK 
OVRLAS 
OVRLAS 
GOLDLS 
GOLLAS 
F TDAVS 
FORLAS 
PLALAS 
VANLAS 
HOPLAS 
HOPLAS 
YUMLAS 
STALAS 
GSFCLS 
GSF 180 
GSF I 8 1  
GSF I 0 2  
GSF 103 
GSF 104 
G S F l 0 5  
RAMLAS 
HAVLAS 
MU I LAS 
MAULAS 
YARLAS 
ORRLAS 
B O I L A S  
F I NLAS 
HATLAS 
GRALAS 
RGOLAS 
KOOLAS 
’JETLAS 
SHOLAS 

BM 
8M 
UN 
BM 
8M 
BM 
BM 
BM 
BM 
BH 
BM 
BM 
BM 
UN 
UN 

I A  
BM 
UN 
8M 
I A  
UN 
UN 
UN 
UN 
I A  
UN 

2 . 3 5  
2 . 3 5  
2 . 3 5  

- 0 . 8 3  
0 . 3 2  
1 . 1 7  
8 . 8 6  
8 . 8 5  

- 1 . 5 8  
- 1 . 5 9  

1 . 5 4  
1 . 5 4  
1 . 2 3  

- 1 . 8 7  
- 1 . 5 4  
- 1 . 5 4  
- 3 . 2 3  

8 . 4 0  
0 . 4 0  
0 . 3 9  
0 . 3 9  
8 . 4 8  
8 . 4 8  
8 . 3 9  
0 . 4 8  
0 . 8 5  
0. 4 5  

1 7 . 7 7  
1 7 . 8 0  
- 0 . 9 7  

5 . 9 8  
5 . 9 9  

- 1 . 8 8  
7 . 9 1  
5 . 9 0  

- 1 . 9 4  
0.88 
3 . 6 2  
5 . 9 9  

- 2 6 . 6 0  
- 2 6 . 6 1  
- 2 6 . 6  1 
- 3 4 . 2 0  
- 3 3 . 3 7  
- 1 7 . 7 7  
- 2 8 . 4 3  
- 2 8 . 4 2  
- 3 0 . 3 2  
- 3 8 . 4 9  
- 2 3 . 4 5  
- 2 3 .  45 
- 2 0 . 1 8  
- 3 4 . 2 6  
- 2 8 . 7 8  
- 2 8 . 7 8  
- 3 8 . 8 6  
- 3 3 . 5 8  
- 3 3 . 5 8  
- 3 3 . 5 8  
- 3 3 . 5 0  
- 3 3 . 5 8  
- 3 3 . 5 8  
- 3 3 . 5 8  
- 3 3 . 5 8  
- 3 0 . 1 8  
- 2 9 . 3 6  

0 . 8 6  
8 . 8 6  

- 2 3 . 9  I 
1 2 . 9 4  

- 3 7 . 9 5  
2 2 . 7 2  
3 7 . 8 4  
4 5 .  64  
4 7 . 8 9  
4 4 . 2 1  
4 2 . 7 3  
3 2 . 6 1  

-0.81 
-8.01 
-8.01 
8.00 
0.00 
0.80 

- 8 . 8 1  
- 8 . 0 1  
-8.81 

0 . 8 0  
8.81 
8.01 
8.00 

-8.81 
8 . 8 8  - 
0.88 
8 . 0 0  

-8.01 
- 8 . 8 1  
- 8 . 0 1  
-8.01 
-0.01 
- 8 . 0 1  
-8.81 
- 8 . 8 1  
8.01 

-8.81 
0 . 8 8  
8 . 8 0  
8.80 
8 . 8 1  

-0.81 
- 0 . 0 1  
8.81 
8 . 0 1  
8.01 
8 . 0 1  
8 . 8 2  
8 . 8 2  

- 2 4 . 2 6  
- 2 4 . 2 7  
- 2 4 . 2 6  
- 3 5 . 8 4  
- 3 3 . 8 6  
- 1 6 . 6 8  
- 2 7 . 5 7  
- 2 7 . 5 8  
- 3 1 . 9 1  
- 3 2 . 0 8  
- 2 1 . 9 8  
- 2  1 . 9 0  
- 1 8 . 9 5  
- 3 6 . 1 4  
- 3 8 . 3 2  
- 3 0 . 3 2  
- 3 4 . 8 9  
- 3 3 .  I I 
- 3 3 . 1 0  
- 3 3 . 1 3  
- 3 3 . 1 2  
- 3 3 .  I0 
- 3 3 . 1 0  
- 3 3 . 1 2  
- 3 3 . 1 1  
- 2 9 . 3 3  
- 2 8 . 9 2  

1 8 . 6 3  
1 8 . 6 6  

- 2 4 . 8 8  
1 8 . 8 5  

- 3 1 . 9 7  
2 0 . 9 1  
4 5 .  7 6  
5 1 . 5 5  
4 5 . 9 6  
4 4 . 1 2  
4 6 . 3 7  
3 8 . 6 3  

- 2 3 . 6 4  
- 2 3 . 6 5  
- 2 3 . 6 5  
- 3 4 . 2 2  
- 3 2 . 7 8  
- 1 5 . 1 6  
- 2 6 . 2 9  
- 2 6 . 3 0  
- 3 1 . 7 8  
- 3 1 . 8 4  
- 2 1 . 3 6  
- 2 1 . 3 6  
- 1 8 . 2 8  
- 3 6 . 4 7  
- 2 9 . 4 8  
- 2 9 . 4 8  
- 3 3 . 5 6  
- 3 3 . 0 8  
- 3 3 . 0 8  
- 3 3 . 8 9  
- 3 3 . 8 9  
- 3 3 . 8 8  
- 3 3 . 0 8  
- 3 3 . 8 8  
- 3 3 . 8 8  
- 2 9 . 5 2  
- 2 8 . 6 1  

1 3 . 8 2  
1 3 . 0 2  

- 2 5 . 0 2  
2 8 . 3 6  

- 3 5 . 2 3  
2 8 . 5 4  
4 5 . 6 6  
5 1 . 8 4  
4 6 . 8 6  
4 4 . 8 8  
4 7 . 0 2  
3 7 . 6 0  

- 2 2 . 5 7  
- 2 2 . 5 9  
- 1 9 . 3 0  
- 3 2 . 4 7  
- 3 0 . 8 6  
- 1 2 . 5 8  
- 2 4 . 9 0  
- 2 4 . 8 4  
- 2 9 . 6 8  
- 2 9 . 5 8  
- 2 0 . 7 8  
- 2 8 . 8 3  
- 1 7 . 4 0  
- 3 1 . 1 4  

- 2 . 2 8  
- 2 9 . 4 7  
- 2 8 . 6 3  
- 3 2 . 9 2  
- 3 3 . 6 4  
- 3 2 . 5 0  
- 3 3 . 8 8  
- 3 2 . 8 9  
- 3 2 . 9 3  
- 3 2 . 9 4  
- 3 2 . 9 3  
- 2 9 . 1 3  
- 2 7 . 5 5  

2 8 . 4 6  
2 0 . 4 9  

- 2 4 . 2 8  
2 8 . 3 8  

- 3 1 . 8 1  
1 9 . 9 5  
4 6 . 3 9  
4 2 . 8 5  
4 5 . 5 8  
4 4 . 6 6  
4 7 . 6 5  
3 9 . 9 7  
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Table 21. Total Geoid Undulations of the Laser Stations Using All the 
Four Methods (Units are in meters). 

W E S T  U N I T E D  S T A T E S  

7 0 5  1 
7 1 8 9  
7 8 8 6  
7 0 6 2  
71 10 
7 8 8 2  
7 0 8  4 
71 14 
7 0 8 5  
71 15 
7 0 8 6  
7 8 8 5  
71 12 
7 8 3 7  
7 8 8 8  
7 9 2  1 
7 8 9 4  

7 8 6 3  
7 0 6  4 
7 1tf0 
7 1 8 1  
7 1 0 2  
7 1 8 3  
7 I d 4  
7 185  
7 8 6  9 
7 8 9  1 

7 1 2 8  
7 2 1 B  

7 0 9 1  
7 9 4 3  

7 8 6 7  

7 8 0 5  
7 9 3 9  
7 8 3 5  
7 8 4 8  
8 8 3 3  
7 8 3 4  

OU I LAS 
OU I LAS 

SAND I E 
MONLAS 
BERRLK 
OVRLAS 
OVRLAS 
GOLDLS 
GOLLAS 
F T D A V S  
FORLAS 
P LALAS 
VANLAS 
HOPLAS 
HOPLAS 
YUMLAS 

au I L A S  

S T A L A S  
G S F C L S  
GSF 100 
G S F  101 
G S F  102 
G S F  183 
G S F  104 
G S F  105 
RAMLAS 
H A Y L A S  

MU I LAS 
MAULAS 

YAR LAS 
ORRLAS 

B O  I LAS 

F I NLAS 
MATLAS 
GRALAS 
RGOLAS 
KOOLAS 
WETLAS 

- 2 4 . 3 5  
- 2 4 . 3 5  
- 2 4 . 3 5  
- 3 5 . 3 0  
- 3 3 . 3 9  
- 1 6 . 9 9  
- 2 7 . 4 2  
- 2 7 . 4 2  
- 3  1 . 9 4  
- 3 2 . 1 6  
- 2 2 . 1 7  
- 2 2 . 1 7  
- 1 8 . 9 6  
- 3 6 . 1 2  
- 3 0 . 4 8  
- 3 8 . 4 8  
- 3 4 . 3 4  

- 3 3 . 2 3  
- 3 3 . 2 3  
- 3 3 . 2 5  
- 3 3 . 2 5  
- 3 3 . 2 3  
- 3 3 . 2 3  
- 3 3 . 2 5  
- 3 3 . 2 3  
- 2 9 . 2 2  
- 2 ?  . 0 z  

1 8 . 9 3  
1 8 . 9 6  

- 2 4 . 7 7  
1 8 . 5 7  

- 3 2 . 0 5  

2 0 . 5 3  
4 6 . 5 5  
5 1 . 9 3  
4 5 . 7 5  
4 4 . 1 3  
4 6 . 6 8  

- 2 4 . 3 4  
- 2 4 . 3 4  
- 2 4 . 3 4  
- 3 4 . 9 0  
- 3 2 . 8 7  
- 1 6 . 3 6  
- 2 7 . 5 9  
- 2 7 . 5 9  
- 3 1 . 8 1  
- 3 1 . 9 7  
- 2 1 . 6 4  
- 2 1 . 6 4  
- 1 9 . 7 7  
- 3 5 . 1 9  
- 3 0 . f l 7  
- 3 0 . 0 7  
- 3 3 . 8 6  

- 2 4 . 3 4  - 2 4 . 2 6  BM 
- 2 4 . 3 4  - 2 4 . 2 7  B M  
- 2 4 . 3 4  - 2 4 . 2 6  UN 
- 3 5 . 0 7  - 3 5 . 0 4  B M  
- 3 3 . 1 0  - 3 3 . 0 6  EM 
- 1 6 . 6 4  - 1 6 . 6 0  BM 
- 2 7 . 5 2  - 2 7 . 5 7  B M  
- 2 7 . 5 2  - 2 7 . 5 8  BM 
- 3 1 . 8 7  - 3 1 . 9 1  BM 
- 3 2 . 0 6  - 3 2 . 8 8  BM 
- 2 1 . 8 7  - 2 1 . 9 8  BM 
- 2 1 . 8 7  - 2 1 . 9 8  EM 
- 1 8 . 8 6  - 1 8 . 9 5  B l l  
- 3 6 . 1 6  - 3 6 . 1 4  UN 
- 3 8 . 2 5  - 3 0 . 3 2  UN 
- 3 8 . 2 5  - 3 8 . 3 2  UN 
- 3 4 . 0 7  - 3 4 . 8 9  UN 

E A S T  U N I T E D  S T A T E S  

- 3 3 . 0 3  - 3 3 . 1 2  - 3 3 . 1 1  B M  
- 3 3 . . 0 3  - 3 3 . 1 2  - 3 3 . 1 8  EM 
- 3 3 . P 5  - 3 3 . 1 4  - 3 3 . 1 3  BM 
- 3 3 . 0 5  - 3 3 . 1 4  - 3 3 . 1 2  B M  
- 3 3 . 0 3  - 3 3 . 1 2  - 3 3 . 1 0  BM _ . ._ .  

- 3 3 . . 0 3  -33.iZ - 3 3 . 1 8  B r i  
- 3 3 . 0 4  - 3 3 . 1 3  - 3 3 . 1 2  BM 
- 3 3 . 0 3  - 3 3 . 1 2  - 3 3 . 1 1  BM 
- 2 9 . 5 3  - 2 9 . 3 9  - 2 9 . 3 3  BM 
- 2 8 . 7 1  - 2 8 . 8 5  - 2 8 . 9 2  BM 

HAWA I I 

1 7 . 9 1  1 8 . 3 6  1 8 . 6 3  BM 
1 7 . 9 4  1 8 . 3 9  1 8 . 6 6  I A  

A U S T R A L I A  

- 2 5 . 0 8  - 2 4 . 8 4  - 2 4 . 8 8  Et1 
1 9 . 1 7  1 8 . 9 1  1 8 . 8 5  UN 

BERMUDA 

- 3 2 . 1 0  - 3 2 . 0 8  - 3 1 . 9 7  BM 

EUROPE 

2 0 . 6 7  2 0 . 6 0  2 8 . 9 1  I A  
4 6 . 3 7  4 6 . 4 5  4 5 . 7 6  UN 
5 1 . 8 3  5 1 . 8 7  5 1 . 5 5  U N  
4 5 . 8 8  4 5 . 8 1  4 5 . 9 6  Ut4 

4 4 . 2 2  Ut4 4 4 . 4 9  4 4 . 3 2  
4 6 . 9 4  4 6 . 8 2  4 6 . 3 7  I A  

J A P A N  

- 2 3 . 6 4  
- 2 3 . 6 5  
- 2 3 . 6 5  
- 3 4 . 2 2  
- 3 2 . 7 8  
- 1 5 . 1 6  
- 2 6 . 2 9  
- 2 6 . 3 8  
- 3 1 . 7 u  
- 3 1 . 8 4  
- 2  1 . 3 6  
- 2  1 . 3 6  

- 3 6 . 4 7  
- 2 9 . 4 8  

- 3 3 . 5 6  

- 1 8 . 2 8  

- 2 9 . 4 8  

- 3 3 . 0 8  
- 3 3  - 0 8  
- 3 3 . 8 9  
- 3 3 . 8 9  
- 3 3 . 8 8  
- 3 3 . 0 8  
- 3 3 . 0 8  
- 3 3  . 8 8  
- 2 9 . 5 2  
- 2 8 . 6  1 

1 3 . 0 2  
1 3 . 8 2  

- 2 5 . 0 2  
2 8 .  3 6  

- 3 5 . 2 3  

za. 5 4  
4 5 . 6 6  
5 1 . 0 4  
4 6 . 0 6  
4 4 . 8 8  
4 7 . 8 2  

- 2 2 . 5 7  
- 2 2 . 5 9  
- 1 9 . 3 8  
- 3 2 . 4 7  
- 3 8 . 8 6  
- 1 2 . 5 8  
- 2 4 . 9 8  
.-24 - 8 4  
- 2 9 . 6 8  
- 2 9 . 5 8  
- 2 8 . 7 8  
- 2 8 . 8 3  
- 1 7 . 4 8  
- 3 1 . 1 4  

- 2 . 2 8  
- 2 9  * 4 7  
- 2 8 . 6 3  

- 3 2 . 9 2  
- 3 3 . 6 4  
- 3 2 . 5 8  
- 3 3 . 0 8  
- 3 2 . 8 9  
- 3 2 . 9 3  
- 3 2 . 9 4  
- 3 2 . 9 3  
- 2 9 . 1 3  
- 2 7 . 5 5  

2L1.46 
2jJ. 4 9  

- 2 4 . 2 8  
2D. 3 8  

- 3 1 . 8 1  

1 9 . 9 5  
4 6 . 3 9  
4 2 . 8 5  
4 5 . 5 8  
4 4 . 6 6  
4 7 . 6 5  

3 8 . 9 3  3 9 . 1 8  3 9 . 0 7  3 8 . 6 3  U N  3 7 . 6 0  3 9 . 9 7  
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In Tables 22 and 23 the undulations for the western United States 

laser stations computed using terrain-corrected (NC from (8.1)) and 

uncorrected gravity data with the modified S joberg’s method are shown. 

In Table 24 the total geoid undulation of the laser stations using the 

local average correction discussed in Chapter 7 for all the four methods 

are shown. The magnitude of this effect is 1-2 m. It would be helpful 

to have a table of residuals between the undulations computed using all 

the four methods and the undulation6 computed from equation (4.2). 

These residuals were  computed only for the 28 laser stations with known 

height references. Table 25 shows the number and name of the laser 

stations, the differences N,-(h-H) where N, are given in Table 21 for all 

the four methods and h-H is the undulation computed from eq, (4.2), the  

height references and the residuals between the undulations computed 

from the OSU86F set (Mz360) and the h-H value. 

The corresponding table of residuals when the local average 

correction is included is shown in Table 26. The statistics of the 

residuals between the terrain-corrected N T C  and the uncorrected N U N  

using the modified Sjoberg’s method and the  NT = h-H value are shown 

in Table 27 for the 12 laser stations in the western United States 

(corresponded values in Tables 22 and 23). 

In Table 28 the statistics of the residuals of the Table 25 are shown 

(undulations computed using all four methods vs. the  N T  value) and in 

Table 29 the corresponded statistics including the local average 

correction are shown. 
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Table 22. Geoid Undulations of the 17 Laser Stations in the Western 
United States Using Modified Sjijberg’s Method and 
Terrain-corrected Gravity Anomalies (Units are in meters). 

7 0 5  1 
7 1 0 9  
7 8 8 6  
7 0 6 2  
7 1  I 0  
7 0 8  2 
7 0 8  4 
7 1  1 4  

7 1  15 
7 0 8 6  
7 8 8 5  
7 1  12  
7 8 8 7  

7 9 2  1 
7 8 9 4  

7 0 8  5 

7 8 8 8  

OU I L A S  
Q U I  L A S  
Q U I  L A S  
SAND I E 
MONLAS 
B E A R L K  
OVR L A S  
OVR L A S  
G O L D L S  
G O L L A S  
F T D A V S  
FOR L A S  
P L A L A S  
V A N L A S  
HOPLAS 
HOP L A S  
YUMLAS 

BM 
BM 
UN 
BM 
BM 
EM . 
BM 
BM 
BM 
BM 
BM 
BM 
BM 
UN 
UN 
UN 
UN 

2.35 - 2 6 . 6 0  -0 .O1 
2.35 - 2 6 . 6 1  - 0 . 0 1  
2.35 - 2 6 . 6 1  - 0 . 0 1  

-0 .83  - 3 4 . 2 0  0.00 
0 . 3 2  - 3 3 . 3 7  0.00 
1.17 - 1 7 . 7 7  0.00 
0 . 8 6  - 2 8 . 4 3  - 0 . 0 1  
0 . 8 5  - 2 8 . 4 2  - 0 . 0 1  

-1 .58  - 3 0 . 3 2  - 0 . 0 1  
- 1 . 5 9  - 3 0 . 4 9  0.00 

1.54 - 2 3 . 4 5  0 . 0 1  
1 .54  - 2 3 . 4 5  0 . 0 1  
1 .23  - 2 0 . 1 8  0.00 

- 1 . 8 7  - 3 4 . 2 6  - 0 . 0 1  
-1 .54  -28 .78  0.00 
-1.54 - 2 8 . 7 8  0.00 
- 3 . 2 3  - 3 0 . 8 6  0.00 

- 2 4 . 2 6  
-24  - 2 7  
-24 .26  
-35 .04  
-33 .06  
- 1 6 . 6 0  
- 2 7 . 5 7  
-27 .58  
- 3 1 . 9 1  
-32 .08  
- 2 1 . 9 0  
- 2  1 . 9 0  
- 1 8 . 9 5  
- 3 6 . 1 4  
- 3 0 . 3 2  
- 3 0 . 3 2  
- 3 4 . 0 9  

- 2 3 . 6 4  
-23 .65  
-23.65 
-34 .22  
- 3 2 . 7 8  
- 1 5 . 1 6  
-26 .29  
- 2 6 . 3 0  
- 3 1 . 7 0  
- 3 1  .E4 
- 2 1 . 3 6  
-21.36 
-18 .28  
- 3 6 . 4 7  
- 2 9 . 4 8  
- 2 9 . 4 8  
- 3 3 . 5 6  

- 2 2 . 5 7  
- 2 2 . 5 9  
- 1 9 . 3 0  
- 3 2 . 4 7  
- 3 0 . 8 6  
- 1 2 . 5 8  
- 2 4 . 9 0  
- 2 4 . 8 4  
- 2 9 . 6 8  
- 2 9 . 5 8  
- 2 0 . 7 8  
- 2 0 . 8 3  
- 1 7 . 4 0  
- 3 1 . 1 4  

- 2 . 2 0  
- 2 9 . 4 7  
- 2 3 . 6 3  

Table 23. Geoid Undulations of the 17 Laser Stations in the Western 
United States Using Modified S jijberg’s Method and 
Uncorrected Gravity Anomalies (Units are in meters). 

7 0 5  I 
71129 
7 8 8 6  
7 0 6  2 
7 1  1 0  
7 0 8  2 
7 0 8  4 
7 1  14  
7 0 8  5 
7 1  15 
7 0 8  6 
7 8 8 5  
7 1 1 2  
7 8 8 7  
7 8 8 8  
7 3 2  I 
7 8 9 4  

QU I LAS 

Q U I  L A S  
SAND I E 
MONLAS 
B E A R L K  
OVR L A S  
OVR L A S  
GOLDLS 
G O L L A S  
F T D A V S  
F O R L A S  
P L A L A S  
V A N L A S  
HOPLAS 
HOPLAS 
YUMLAS 

au I LAS 
BM 
BM 
UN 
BM 
BM 
BM 
EM 
BM 
BM 
BM 
BM 
BM 
BM 
UN 
UN 
UN 
UN 

1 . 7 7  
1.77 
1.77 

-1.22 
-0.07 

0 . 8 7  
-0.16 
-0 .17  
-2 .21  
-2 .16  

1 . 3 2  
1.32 
1.05 

-2.13 
-1.65 
-1.65 
-3.39 

- 2 6 . 6 0  
- 2 6 . 6 1  
-26 .6  1 
- 3 4 . 2 0  
-33 .37  
-17 .77  
- 2 8 . 4 3  
-28 .42  
-30 .32  
-30 .49  
- 2 3 . 4 5  
-23 .45  
-20 .  I 8  
- 3 4 . 2 6  
- 2 8 . 7 8  
- 2 8 . 7 8 -  
- 3 0 . 8 6  

-0 .01  
-0.01 
- 0 . 0 1  
0.00 
0.08 
0.00 

-0.01 
-0.01 
- 0 . 0 1  
0.00 
0.01 
0 . 0 1  
0.00 

-0 .01  
0.00. 
0.00 
0.00 

-24 .84  
-24 .84  
- 2 4 . 8 4  
-35 .43  
-33 .45  
- 1 6 . 9 0  
-28 .59  
- 2 8 . 6 0  
-32 .54  
-32 .65  
-22 .12  
-22 .12  
- 1 9 . 1 3  
- 3 6 . 4 0  
- 3 0 . 4 3  
- 3 0 . 4 3  
-34.25 

- 2 3 . 6 4  
- 2 3 . 6 5  
- 2 3 . 6 5  
-34 .22  
- 3 2 . 7 8  
- 1 5 . 1 6  
- 2 6 . 2 9  
- 2 6 . 3 0  
-3  1 . 7 0  
-3  I .  8 4  
-2 1 . 3 6  
- 2 1 . 3 6  
-18 .28  
-36 .47  
- 2 9 . 4 8  
-29 .48  
-33 .56  

- 2 2 . 5 7  
- 2 2 . 5 9  
- 1 9 . 3 0  
- 3 2 . 4 7  
- 3 0 . 8 6  
- 1 2 . 5 8  
- 2 4 . 9 0  
- 2 4 . 8 4  
- 2 9 . 6 8  
- 2 9 . 5 8  
- 2 0 . 7 8  
- 2 0 . 8 3  
- 1 7 . 4 0  
- 3 1 . 1 4  

- 2 . 2 0  
- 2 9 . 4 7  
- 2 8 . 6 3  
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Table 24. Total Geoid Undulations of the  Laser Stations Using All the 
Four Methods and t h e  Local Average C o r r e c t i o n  ( U n i t s  are in 
meters). 

7 0 5  1 
7 1 0 9  
7 8 8 6  
7 0 6  2 
71 10 
7 0 8  2 
7 0 8  4 
7 1 1 4  
7 8 8 5  
71 15  
7 0 8 6  
7 8 8 5  
71 1 2  
7 8 8 7  
7 8 8 8  
7 9 2  1 
7 8 9 4  

7 0 6  3 
7 0 6  4 
7 lBLr 
7 1 0 1  
7 182 
7 1 0 3  
7 1 0 4  
7 1 0 5  
7 8 6  9 
7 8 9  1 

712R 
7 2 1 8  

7 8 9 8  
7 9 4 3  

7 0 6  7 

7 8 8 5  
7 9 3 9  
7 8 3 5  
7 8 4 8  
8 8 3 3  
7 8 3 4  

7 8 3 8  

O?I I L A S  - 2 4 . 7 9  
OU I L A S  - 2 4 . 7 9  
OU I L A S  - 2 4 . 7 9  - 
SAND I E - 3 4 . 9 3  
MONLAS - 3 3 . 0 2  
B E A R L K  - 1 4 . 3 6  
OVR L A S  - 2 7 . 6 2  
O V R L A S  - 2 7 . 6 2  
G O L D L S  - 3 1 . 7 9  
G O L L A S  - 3 2  . 0 l  
F T D A V S  - 2 0 . 9 5  _. - _  
F O R L A S  - 2 0 . 9 5  
P L A L A S  - 1 9 . 0 1  
VAH L AS - 3 6 . 2 6  
H O P L A S  - 2 9 . 9 9  
H O P L A S  - 2 9 . 9 9  
Y U M L A S  - 3 3 . 4 4  

S T A L A S  
G S F C L S  
GSF 180 
GSF 101 
GSF lIJ2 
GSF 1 8 3  
GSF 1 0 4  
GSF 1 0 5  
P. A M L A S 
HAY L A S  

MU I L A S  
flAU L AS 

YAR L A S  
ORR L A S  

C D I L A S  

F I N L A S  
M A T L A S  
GRALAS 
R G O L A S  
KOOLAS 
U E T L A S  

- 3 2 . 7  1 
- 3 2 . 7  1 
- 3 2 . 7 3  
- 3 2 . 7 3  
- 3 2 . 7 1  
- 3 2 . 7 1  
- 3 2 . 7 3  
- 3 2 . 7 1  
- 2 9 . 9 0  
- 2 8 . 5 4  

1 8 . 5 6  
1 8 . 5 9  

- 2 4 . 9 9  
1 9 . 3 9  

- 3 2  * 13 

2 0 . 5 9  
4 6 . 5 6  
5 1 . 8 3  
4 6 . 3 1  
4 4 . 7 4  
4 6 . 5 3  

- 2 4 . 5 5  
- 2 4 . 5 5  
- 2 4 . 5 5  
- 3 4 . 7 3  
- 3 2 . 7 0  
- 1 5 . 1 1  
- 2 7 . 6 9  
- 2 7 . 6 9  
- 3 1 . 7 4  
- 3 1 . 9 0  
- 2 1 . 0 6  
- 2 1 . 0 6  
- 1 8 . 8 0  
- 3 6 . 2 5  
- 2 9 . 8 4  
- 2 9 . 8 4  
- 3 3 . 4 3  

- 2 4 . 6 5  
- 2 4 . 6 5  
- 2 4 . 6 5  
- 3 4 . 8 1  
- 3 2 . 8 4  
- 1 4 . 7 8  
- 2 7 . 6 6  
- 2 7 . 6 6  
- 3 1 . 7 6  
- 3  1 . 9 5  
-21 .O1 
-2  1 . O 1  
- 1 8 . 9 0  
- 3 6 . 2 6  
- 2 9 . 9 0  
- 2 9 . 9 0  
- 3 3 . 4 3  

- 2 4 . 6 0  
- 2 4 . 6  1 
- 2 4 . 6 0  
- 3 4 . 7 6  
- 3 2 . 7 8  
- 1 4 . 5 7  
- 2 7 . 7 3  
- 2 7 . 7 4  
- 3  1 . 7 9  
- 3 1 . 9 6  
- 2 5 . 9 6  
- 2 0 . 9 6  
- 1 8 . 9 9  
- 3 6 . 2 4  
- 2 9 . 9 4  
- 2 9 . 9 4  
- 3 3 . 4 0  

EAST U N I T E D  S T A T E S  

BM 
BM 
UN 
BM 
BM 
BM 
BM 
BM 
BM 
BM 
B M 
BM 
BM 
UN 
UN 
UN 
UN 

- 2 3 . 6 4  
- 2 3 . 6 5  
- 2 3 . 6 5  
- 3 4 . 2 2  
- 3 2 . 7 8  
- 1 5 . 1 6  
- 2 6 . 2 9  
- 2 6 . 3 0  
- 3  1 . 7 0  
- 3 1 . 8 4  
- 2 1 . 3 6  
- 2 1 . 3 6  
- 1 8 . 2 8  
- 3 6 . 4 7  
- 2 9 . 4 8  
- 2 9 . 4 8  
- 3 3 . 5 6  

- 2 2 . 5 7  
- 2 2 . 5 9  
- 1 9 . 3 0  
- 3 2 . 4 7  
- 3 8 . 8 6  
- 1 2 . 5 8  
- 2 l . 9 E l  
- 2 4 . 8 4  
- 2 9 . 6 8  
- 2 9 . 5 8  
- 2 8 . 7 8  
- 2 8 . 8 3  
- 1 7 . 4 B  
- 3 1 . 1 4  
-2. 2B 

- 2 9 . 4 7  
- 2 8 . 6 3 .  

- 3 2 . 7 8  - 3 2 . 7 5  - 3 2 . 7 1  BM - 3 3 . 8 8  - 3 2 . 9 2  
- 3 2 . 7 0  - 3 2 . 7 5  - 3 2 . 7 1  BM - 3 3 . 8 8  - 3 3 . 6 4  
- 3 2 . 8 0  - 3 2 . 7 7  - 3 2 . 7 3  BM - 3 3 . 8 9  - 3 2 . 5 . 0  
- 3 2 . 8 . 9  - 3 2 . 7 7  - 3 2 . 7 2  BM - 3 3 . 0 9  - 3 3 . 1 8  
- 3 2 . 7 8  - 3 2 . 7 5  - 3 2 . 7 0  BM - 3 3 . 8 8  - 3 2 .  8 9  
- 3 2 . 7 8  - 3 2 . 7 5  - 3 2 . 7 0  B N  - 3 3 . 0 8  - 3 2 . 3 3  
- 3 2 . 7 9  - 3 2 . 7 6  - 3 2 . 7 2  BM - 3 3 . 8 8  - 3 2 . 3 4  
- 3 2 . 7 8  - 3 2 . 7 5  - 3 2 . 7 1  B M  - 3 3  .R8 - 3 2 . 9 3  
- 2 9 . 8 5  - 2 9 . 8 7  - 2 9 . 8 6  BM - 2 3 . 5 2  - 2 3 . 1 3  
- 2 5 . 4 8  - 2 8 . 5 1  - 2 8 . 5 5  BM - 2 8 . 6  1 - 2 7 . 5 5  

HAWA I I 

1 7 . 7 3  1 8 . 1 0  1 8 . 3 4  BM 1 3 . 8 2  ZB. 4 6  
1 7 . 7 6  18 .13  1 8 . 3 7  I A  1 3 . 8 2  2lJ. 4 9  

A U S T R A L I A  

- 2 5 . 1 8  - 2 5 . 8 0  - 2 5 . 0 5  EM - 2 5 . 8 2  - 2 4 . 2 8  
1 9 . 5 6  1 9 . 4 9  1 9 . 4 8  U N  2 8 .  3 6  2 0 . 3 8  

BERMUDA 

- 3 2 . 1 4  - 3 2 . 1 1  - 3 2 . 0 3  BM - 3 5 . 2 3  - 3  1 . 8  1 

EUROPE 

2 R . 7 8  2 0 . 6 4  2 8 . 9 6  I A  2 8 . 5 4  1 9 . 9 5  
4 6 . 3 8  4 6 . 4 6  4 5 . 7 7  UP1 4 5 . 6 6  4 6 . 3 9  
5 1 . 7 8  5 1 . 8 0  5 1 . 4 7  UN 5 1 . 8 4  9 2 . 8 5  
4 6 . 1 5  4 6 . 2 1  4 6 . 3 9  UN 4 6 . 8 6  4 5  * 5 8  
4 4 . 7 8  4 4 . 7 5  4 4 . 6 9  uri 4 4 . 8 0  4 4 . 6 6  
4 6 . 8 7  4 6 . 7 2  4 6 . 2 6  I A  4 7 . 8 2  4 7 . 6 5  

J A P A N  

S H O L A S  3 9 . 5 6  3 9 . 4 8  39 .51  3 9 . 1 1  UN 3 7 . 6 0  3 9 . 9 7  
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Table 25. Differences Between the Undulations Computed Using All the 
Four Methods (and the OSU86F set) and the NT Value (Units 
are in meters). Number of Stations: 28. 

----- 
NUM 

7 0 5  1 
7 109 
706 2 
7 1  10 
708  2 
7084 
7 1  14 
708  5 
7 1  15 
708  6 
7885  
7112  
7063  
7064 
7 1 0 d  
7101  
7 185 
7103  
7 104 
71H5 
706  9 
709  1 
7 1 2 0  
7 2  1 0  
7 0 9 0  
786  7 

----- 

7885 
7834 

------------ 
NAME 

OU I L A S  
Q U I  L A S  
SAND I E 
MONLAS 
B E A R L K  
O'JR L A S  
C'JR L A S  
G O L D L S  
G O L L A S  
F T D A V S  

P L A L A S  

G S F C L S  
GSF 1 0 0  
GSF 1 0 1  
GSF 1 0 2  
GSF 183 
GSF 104  
GSF 105  
RAMLAS 
H A Y L A S  
Mkl I L A S  
K A U L A S  
V A R L A S  
B D I L A S  
F I N L A S  
Y E T L A S  

-----------_ 

F O R L A S  . 

S TA L A S  

--------- 
S T O K E S  

- 1 . 7 8  
- 1 . 7 6  
- 2 . 8 3  
-2 .53  
- 4 . 4 1  
- 2 . 5 2  
-2 .58  
- 2 . 2 6  
- 2 . 5 8  
-1 .39  
- 1 . 3 4  
- 1 . 5 6  
-0 .31  

0 . 4 1  
-0 .75  
- 0 . 1 7  
- 0 . 3 4  
- 0 . 3 8  
- 0 . 3  1 
- 0 . 3 0  
- 0 . 0 9  
- 1 . 4 7  
-1 .53  
- 1  . s 3  
- 0 . 4 9  
- 0 . 2 4  

-0 .97  

--------- 

0. s a  

--------- 
M E I S S L  

-1 .77  
-1 .75  
- 2 . 4 3  
- 2  -01 
- 3 . 7 8  
- 2 . 6 9  
- 2 . 7 5  
- 2 . 1 3  
- 2 . 3 9  
- 0 . 8 6  
-0.8 1 
-1 .37  
-0.. 1 1  

8 . 6 1  
-s. 55  

d . 0 3  
- 0 . 1 4  
-d. Id 
- 8 . 1 0  
-0. I d  
-8. 4 0  
- 1 . 1 6  
- 2 . 5 5  
-2 .55  
-d. 814 
- 0 . 2 9  
E. 7 2  

- 0 . 7 1  

--------- 
- 1 . 7 7  
- 1  - 7 5  
- 2 . 6 0  
-2 .24  
- 4  - 0 6  
- 2 . 6 2  
-2 .68  
-2 .19  
- 2 . 4 8  
-1 .09  
- 1 . 0 4  

- 1 . 6 9  
-1 .68  
- 2 . 5 7  
- 2 . 2 0  
- 4 . 0 2  
- 2 . 6 7  
- 2 . 7 4  
- 2 . 2 3  
- 2 . 5 0  
-1 .12  
- 1 . 0 7  

- 1 . 4 6  - 1 . 5 5  
- 0 . 2 0  -0 .19  

0 . 5 2  0 . 5 4  
- 0 . 6 4  - 0 . 6 3  
- 0 . 0 6  - 0 . 0 4  
- 0 . 2 3  - 0 . 2 1  
- 0 . 1 9  -E. 1 7  
-0 ..l 9 - 0 . 1 8  
- 0 . 1 9  -8.  I8 
-8.26 
- 1 . 3 0  
- 2 . 1 0  
- 2 . 1 0  
- 8 . 5 6  
- 0 . 2 7  

0 . 6 5  

. . _ _  
- 0 . 2 0  
- 1 . 3 7  
- 1 . 8 3  
- i  . 8 3  
- 6 . 6 0  
-B. 16 
8. 96  

- 0 . 8 3  - 1  . 2 8  

---------------- 
R E F  OSU86F 

BM -1 .87  
EM - 1 . 8 6  
EM -1 .75  
BM -1 .92  
13 I4 - 2 . 5 8  
BM -1 .39  
BM - 1 . 4 6  
EM - 2 . 0 2  
BM - 2 . 2 6  
BM - 0 . 5 8  
BM - 0 . 5 3  
BM - 0 . 8 8  
BM - 0 . 1 6  
BM 0 . 5 6  
EM - 0 . 5 9  
EM - 0 . 0 1  
BM - 0 . 1 9  
EM - 8 . 1 5  
BM - 0 . 1 4  
BM - 0 . 1 5  
BM -0. ??  
EM - 1 . 8 6  
BM - 7 . 4 4  
I A  - 7 . 4 7  
BM - 8 . 7 4  
EM - 3 .  A2 
I A  0 . 5 9  
i A  - 8 . 6 3  

---------------- 

Table 26. Differences Between the Undulations Computed Using All the 
Four Methods (and the OSU86F set) with the Local Average 
Correction and the NT Value (Units are in m e t e r s ) .  Number of 
Stations: 28. 

----- 
NUM 

705 1 
7 189 
7052 
71  10 
7082 
708 4 
7 1  14 
7085 
71  15 

7 1  12 
7063 
706 4 
7 18H 
7101 
7 1F12 
7103 
7 184 
7105 
7069 
709 1 
7120  
7 2  10 
7890 
706 7 
7805 
7834 

----- 

7086 
7885 

------- 
NAME 

QU I L A S  
Q U I  L A S  
SAND I E 
MONLAS 
BEARLK 
OVR L A S  
OVR L A S  
G O L D L S  
G O L L A S  
F T D A V S  
F O R L A S  
P L A L A S  
S T A L A S  
G S F C L S  
GSF 1 0 0  
GSF 1 0 1  
GSF 1 . ~ 2  
GSF 103  
GSF 104  
GSF 105 
RAMLAS 
H A Y L A S  
MU I L A S  
MPULAS 
Y A R L A S  
BD I L A S  
F I N L A S  
WETLAS 

------- 
--------------- 

S T O K E S  

- 2 . 2 2  
- 2 . 2 8  
-2 .46  
- 2 . 1 6  
- 1 . 7 6  
- 2 . 7 2  
- 2 . 7 8  
- 2 . 1 1  
- 2 . 4 3  
- 0 . 1 7  
-8. 12 
- 1 . 6 1  

0 . 2 1  
0 . 9 3  

- 0 . 2 3  
0 . 3 5  
0 . 1 8  
0 . 2 2  
0 . 2 1  
0 . 2 2  

-0.77 
- 0 . 9 9  
-1.9M 
- 1 . 9 0  
- 0 . 7 1  
- 8 . 3 2  

0 . 6 4  
-1 .12  

--------------- M E I S S L  

-1 .98  
- 1 . 9 6  
- 2 . 2 6  
- 1 . 8 4  
- 2 . 5 3  
- 2 . 7 9  
- 2 . 8 5  
- 2 . 8 6  
- 2 . 3 2  
- 0 . 2 8  
- 0 . 2 3  
- 1 . 4 0  

0 . 1 4  
0 . 8 6  

-1J. 3 0  
B. 28 
0 . 1 1  
8. 15  
0 . 1 5  
0 . 1 5  

- 0 . 7 2  
- 0 . 9 3  
- 2 . 7 3  
- 2 . 7 3  
-LJ. 9 0  
- 0 . 3 3  
a. 75  

-B. 78  

MOLOD.  S J O B .  

- 2 . 0 8  - 2 . 0 3  
- 2 . 8 6  - 2  - 0 2  
- 2 . 3 4  -2 .29  
- 1 . 9 8  - 1 . 9 2  
-2 .  2B  - 1 . 9 9  
- 2 . 7 6  - 2 . 8 3  
-2 .62  - 2 . 9 0  
- 2  .C8 - 2 . 1 1  
- 2 . 3 7  - 2 . 3 8  
- 0 . 2 3  -8. 18- 
- 0 . 1 8  -rr .  13 
- 1 . 5 0  - 1 . 5 9  

0 . 1 7  8 . 2 1  
0 . 8 9  0 . 9 4  

- 0 . 2 7  - 0 . 2 3  
0 . 3 1  8 . 3 6  
0 . 1 4  0 . 1 9  
0 . 1 8  8 . 2 3  
0 . 1 8  0 . 2 2  
0 . 1 8  0 . 2 2  

- 0 . 7 4  - 0 . 7 3  
- 0 . 9 6  -1  .OO 
- 2 . 3 6  - 2 . 1 2  
- 2 . 3 6  - 2 . 1 2  
- 0 . 7 2  - 0 . 7 7  
- 0 . 3 3  -8. 22  

0 . 6 9  1 .O1 
- 8 . 9 3  - 1 . 3 9  

BM - 1 . 0 7  
BM -1 .06 
BM - 1 . 7 5  
BM - 1 . 9 2  
BM - 2 . 5 8  
BM - 1 . 3 9  
BM -1 .46 
BM -2 .02 
BM - 2 . 2 6  
EM - 0 . 5 8  
BM -0 .53 
BM -0 .88 
BM - 0 . 1 6  
8M 0 . 5 6  
BM - 0 . 5 9  
BM -0.01 
BM - 0 . 1 9  
BM -0 .15  
BM -0 .14 
BM -0 .15 
BM - 0 . 3 9  
BM - 1 . 0 6  
BM -7 .44 
I A  - 7 . 4 7  
BM - 0 . 7 4  
BM - 3 . 4 2  
I A  0 . 5 9  
I A  - 0 . 6 3  
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RMS Difference 
Standard Deviation Difference 
Minimum Difference 
Maximum Difference 

Table 27. Statistics of the Differences Between the Terrain-corrected NTC 
and Uncorrected NuN Undulations and the  NT Value Using t h e  
Modified Sjijberg’s Method for Stations in the  Western United 
States ( U n i t s  are in meters). Number of Stations: 12. 

2.31 2.83 
0.79 0.92 

-4.02 -4.32 
-1.07 -1.29 

STATISTICS I NTC-NT I Nil N-NT 
Mean Difference I -2.17 I -2.68 

STATISTICS NI-NT NZ-NT N,-NT Nd-NT MR-NT NR-NT* 
Mean Difference -1.27 -1.18 -1.21 -1.21 -1.39 -0.92 
RMS Difference 1.70 1.65 1.66 1.65 2.36 1.44 
Standard Dev. D i f f .  1.13 1.15 1.14 1.12 1.91 1.10 
M i n i m u m  Difference -4.41 -3.78 -4.06 -4.02 -7.47 -3.42 
*Maximum Difference 0.58 0.72 0.65 0.96 0.59 0.59 

RMS Difference 
Standard Deviation Difference 
Minimum Difference 
Maximum Difference 

Table 28. Statistics of the Differences Between the Undulations Computed 
Using All the Four Methods N i  (and the OSU86F Field) and the 
NT Value (Units are in meters). Number of Stations: 28. 

1.52 1.58 1.54 1.53 
1.14 1.17 1.15 1.17 

-2.78 -2. a5 -2.82 -2.90 
0.93 0.86 0.89 1.01 

Table 29. Statistics of the Differences Between the Undulation Computed 
Using All the Four Methods Nf Including the Local Average 
Correction and t h e  NT Value (Units are in meters). Number of 
Stations: 28. 

STATISTICS I N;-NT I N;-NT I N ~ - N T  I N;-NT 
Mean Difference I -1.00 I -1.06 I -1.03 I -1.03 

8.3 Discussion of the results 

Comparing the terrain-corrected vs. the uncorrected undulations for 

12 stations in the  western United States (Table 27) we see that the 

terrain-corrected undulations have better agreement with the N T  value 
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than the uncorrected undulations: The mean and the RMS difference 

with the NT value reduced by -50 cm when terrain-corrected data was  

used. The standard deviation of the difference also decreased by -20 

cm when t h e  terrain corrections w e r e  taken into account. When we  

compare the four methods with the NT value for all the 28 stations for 

which we have known height references the standard deviation of the 

difference is -1.10 m (Table 28). From the s a m e  Table we  can see that 

the standard deviation of the difference between the  undulations 

computed using the OSU86F set and the NT values is 1.91 m. If w e  are 

to exclude the two laser stations 7120, 7210 in Maui tha t  show large 

discrepancies, then the  standard deviation of the difference drops to 

1.10 m. If w e  examine Table 25 we see that  there are systematic 

differences for the undulations of the 12 Western United States stations 

and the NT value on the order of 2 m. To further investigate these 

systematic differences the  15'x15' mean anomalies in the northern 

'United States and Canada (Lachapelle et al., 1982) w e r e  used to compute 

geoid undulations for the above stations. The statistics of the residuals 

between t h e  values of the undulations using the  above data set and the 

NT value are shown in Table 30 for all four methods. For the s a m e  12 

stations the corresponding statistics using the 2 . ~ 2 '  anomalies (Table 

12) are  shown in Table 31. We can see that the systematic differences 

are also present when the 15'x15' anomalies are used. However, t he  

standard deviation of the difference decreased from 79 c m  (Z'x2' data) 

to 65 cm (15'x15' data) which is surprising since one would expect 

better accuracy when the  2 . ~ 2 '  data are used instead of the  15'x15' 

data. The explanation may be that the 15' averaging procedure was  
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STATISTICS NI-NT N~-NT 
Mean Difference -1.99 -1.72 
RMS Difference 2.10 1.83 
Standard Deviation Difference 0.65 0.65 
Minimum Difference -2.88 -2.66 
Maximum Difference -1.04 -0.73 

Table 30. Statistics of the Differences Between the Undulations Computed 
Using the 15'x15' Anomalies and the NT Value for the 12 
Western U.S. Laser Stations. The Modified S joberg's Method 
H a s  Been Used (Units are in meters). 

NS-NT N4-NT 
-1.83 -1.82 
1.93 1.95 
0.61 . 0.72 
-2.64 -2.69 
-0.87 -0.62 

STATISTICS N1-NT N2-NT NS-NT 
Mean Difference -2.29 -2.06 -2.17 
RMS Difference 2.43 2.21 2.31 
Standard Dev. D i f f .  0.81 0.81 0.79 
Minimum Difference -4.41 -3.78 -4.06 
Maximum Difference -1.34 -0.81 -1.04 

Table 31. Statistics of the Differences Between t h e  Undulations 
Computation Using the 2'xZ' Anomalies (and the  OSU86F Field) 
and the  NT Value for the 12 Western U.S. Laser Stations. The 
Modified SjGberg's Method Has  Been Used (Units are in 
meters). 

N,-NT NR-NT 
-2.17 -1.46 
2.31 1.59 
0.79 0.63 
-4.02 -0.53 
-1.07 -2.58 

better than the 2' averaging procedure. The undulations computed from 

the OSU86F set for the above 12 stations give statistics s imilar  to the 

undulations computed from the 15'x15' data when compared to the NT 

value. This is an expected result, since the  15.~15' data was used for 

the computation of the OSU86F set. The cause of the above systematic 

differences was not found and further studies are needed to investigate 

why these systematic differences are present. 

The application of the local average correction improves the 

statistics as  it can be seen by comparing Tables 28 and 29, Note the 
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improvement (compare Tables 25 and 26) of about 2 meters of the 

undulation of station 7082 in B e a r  Lake, Utah when the local average 

correction was used with respect to the  NT value. 

Furthermore, there is an excellent internal agreement between t h e  

undulations computed using all the four methods. The standard 

deviations of the differences between the undulations computed using 

two different methods is on the order of 20 cm. When the undulations 

computed using all t he  four methods are  compared to the undulations 

computed using the OSU86F set they have a standard deviation 

difference of about 1.5 m. The largest differences between t h e  various 

methods and the OSU86F set occur for the 2 laser stations on Maui 

(-5 m) and for t h e  Bermuda station ( -3  m).  The gravimetric undulations 

for the  above cases are closer to the  NT values than the undulations 

computed from the OSU86F set. 

Using a set of 14070 point free-air gravity anomlies by W a t t s  

(private communication, 1987) in the vicinity of Hawaii the  geoid 

undulation of the laser station 7210 was computed to be a s  follows: 

18.64 m, 17.95 m, 18.26 m and 18.50 m for the Stokes’, Meissl’s, 

Molodenskii’s and modified S joberg’s method respectively. W e  can see 

that the  above results agree within -20 cm with the  gravimetric values 

of the undulations of Tables 21 and 24. From the gravity data sent by 

Watts 8.43 mgal were subtracted to account for a systematic difference 

that w a s  detected within t h e  5*x5‘ computation area in the vicinity of 
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Hawaii between the Watt's set and the anomalies implied by the OSU86F 

set. 

8.4 Altimeter Geoid Undulation Computations in Bermuda A r e a  

An alternative method to compute geoid undulations is the method 

of the least squares collocation. This method was  applied to the 10360 

Ohio State adjusted GEOS-3/SEASAT altimeter sea surface heights (Liang, 

1983) covering the Bermuda region (33'~9<31".63, 294'.54X<295'.87, laser 

station number 7067). The above altimeter data was referred to an  

equaiorial radius of 6378137 m. To refer the altimeter data to the 

equatorial radius of our adopted reference ellipsoid (see Chapter 4, 

equation (4.1)) we added 1 meter to all the sea surface heights that 

w e r e  selected for the collocation method. W e  then used the collocation 

method to compute the undulation at the laser station 7067 with the 

following specifications: 

a) The whole area (1O.37 x 1O.37) was suhdi-vided into 49 OO.20 x 

0'.20 sub-areas so that a maximum of 300 points were  used for 

each area by t h e  collocation method. For the predictions near 

the edges of each OO.20 x OO.20 area, a border of 0".20 was 

specified. 

b) The covariance function used between degrees 2 and 180 was  the 

one implied by the anomaly error degree variances of the 

potential coefficient solution of Rapp ( 1981 b); between degrees 

180 to the Tscherning-Rapp (1974) model (see eq. (2.18)) w a s  

used for the anomaly degree variances. 
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c) The reference field up to 180 was  removed from the data using 

the solution of Rapp (1981b). 

d) The predictions of the undulations were  done at the intersections 

of the points of a grid of 2 . ~ 2 ' .  The value of the undulation for 

the laser station 7067 was  then computed using the four closest 

grid points by bi-linear interpolation with respect to the latitude 

and the longitude. 

The value of the undulation computed from the above collocation 

method was -32.11 m. The accuracy of the  undulation predictions at the 

four closest grid points was t0.28 m. 

Using the results of the collocation method and the modified 

SjGberg'e method two geoid m a p s  (Figures 14 and 15) were  produced in 

the Bermuda region (31'.63<0633', 294'.5<Xh295'.87). The corresponding 

m a p  of the differences between the gravimetric and the altimetric geoid 

(Figure 14 - Figure 15) is shown in Figure 16. The mean difference of 

the 1764 undulatione computed at the 2' grid intersections in the above 

region minus the corresponding altimetric undulations w a s  -0.63 m; the 

RMS difference was 0.78 m and the standard deviation of the difference 

was 0.47 m. 

The laser station 7067 has been also used for the calibration of the  

altimeter satellites (Kolenkiewicz et al., 1982). Using the  four laser 

supported calibration passes of SEASAT at the t i m e  of closest approach 

to the  laser station the geoid undulation has been computed for these 
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Figure 14. Gravimetric Geoid Using Modified SjGberg's Method for the 
Laser Station 7067 in  the  Bermuda Area (C.I. = 25 cm); 
2 . ~ 2 '  Grid Computed. 
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F i g u r e  15. Geoid Computed U s i n g  GEOS-3/SEASAT Al t imeter  Data for the 
L a s e r  Station 7067 in the B e r m u d a  A r e a  (C.I. = 25 cm); 2'x2' 
Grid Computed.  
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Figure 16. Map of the Differences Between the Gravimetric and the 
Altimeter Geoid in t h e  Bermuda Area (Figure 14 - Figure 15); 
(2.1. = 25 cm. 
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1978 
Sept. 13 

passes by Kolenkiewicz et al. (1987), as follows: To the raw altimeter 

data corrections due to tides, d ry  troposphere, w e t  troposphere, 

ionosphere, center of gravity, sea state bias and height acceleration 

were applied. Then for the above four closest passes the geoid 

undulation was  obtained from the  corrected altimetric observations and 

the tracking data by smoothing the offshore a l t i m e t e r  data acros8 land 

(ibid., Table 5). Table 32 summarizes the results obtained from the 

above SEASAT calibration for the four passes: The first columm gives 

the  date of pass, the second column gives the latitude, the third column 

gives the geoid undulation which refers to an  equatorial radius of 

6378137 m and the last column gives the geoid undulation which refers 

to our adopted equatorial radius of 6378136 m and is obtained by adding 

1 meter to column three. 

(a,=6378137 m) (a,=6378136 m) 
32O.3520 -32.89 -31.89 

Table 32. Geoid Undulations in m e t e r s  for the Four SEASAT Passes at 
the Time of Closest Approach to the Laser Station 7067 in 
Bermuda (Kolenkiewicz et al., 1987). 

Sept. 16 
Sept. 22 

(Date of Pass I Latitude1 Undulation I Undulation 

32O.3553 -32.84 -31.84 
32O.3615 -32.69 -31.69 

O c t .  1 32’. 3653 -32.62 -31.62 

The accuracy that is associated with the above computations (ibid., p. 

27) is *12 cm. To obtain a unique value for the undulation of the laser 

station ( 0  = 32O.3538) we can linearly interpolate this value with respect 

to the latitude from the first two values of the undulation (a, = 6378136 
m) of Table 32. This interpolated value of the undulation at the  laser 
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station is then -31,86 m. 

Summarizing the geoid undulation computations for the laser station 

7067 in Bermuda we have: The gravimetric undulations using all the 

four methods (Table 21) are: -32.05 m, -32.10 m, -32.08 m, and -31.97 m 

for the Stokes', Meissl's, Molodenskii's and modified S jijberg's methods 

respectively; the "ellipsoidal minus orthometric" value of the undulation 

is -31.81 m; the value computed from the Ohio State GEOS-3/SEASAT 

altimeter data is -32.11 m; and the value resulted from the SEASAT 

calibration is -31.86 m. Thus the results for the Bermuda laser station 

undulation show a very good agreement on the order of 30 cm using all 

the different methods. This is clearly due to the sufficient coverage of 

terrestrial gravity anomalies and GEOS-3/SEASAT altimeter sea surface 

heights in the Bermuda region. 

Finally note that the deviation of the  sea surface f r o m  the geoid, 

known as Sea SGrface Topography (SST) plays an important role in the 

above computations and is separately discussed in Appendix B. 

8.5 Altimeter Geoid Undulation Computations for the Five Laser Stations 

in the Western Atlantic and Pacific Using Collocation 

Finally, the collocation method applied to the adjusted 

GEOS-3/SEASAT surface heights as before was used to compute geoid 

undulations on islands in the Western Atlantic and the  Pacific since no 

terrestrial gravity data w a s  available for the  above stations. For each 

laser station a window of A4 = OO.25 in latitude and AX = OO.25 in 
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longitude centered at the laser station with a border of OO.25 was used. 

Again the maximum of data points used was 300. The predictions of the 

undulations were done a t  the intersections of the points of a grid of 

3 . ~ 3 ' .  The value of the undulation w a s  then computed using the four 

closest grid points by bi-linear interpolation with respect to the latitude 

and the longitude. Figure 18 shows the undulation m a p  derived from 54 

adjusted GEOS-3/SEASAT altimeter data (whose distribution is shown in 

Figure 17) for the laser station 7061 on Easter Island, Chile. Table 33 

shows the laser station number; t he  number of adjusted GEOS-3/SEASAT 

altimeter data that were used in the predictions for each oceanic station; 

the undulation N A L T  computed from the  OSU86F set taken up to degree 

360; and the differences NALT-NT and NpOT-NT. 

In Table 34 we can see the statistics of t h e  differences NALT-NT and 

Npot-NT for the five oceanic stations. The results using the collocation 

method showed better agreement with the N T  value than the OSU86F set. 

The standard deviation of the difference in the first  case is 0.79 m and 

. in the second case is 1.25 m. Also the mean difference in the first case 

is by 1.85 m smaller than in the second case. The better agreements 

with the NT values using the collocation method than using the OSU86F 

set  can be explained as  follows: Within the collocation method used here 

all the available altimeter sea surface heights in a OO.75 x OO.75 area 

were taken into account, whereas for the OSU86F solution 0.3 x OO.5 

mean anomalies derived form the above sea surface heights were used, 

where clearly some loss of the high frequency information has taken 

place. 
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Figure 17. Distribution of the 54 Adjusted GEOS-3/SEASAT Altimeter 
Data Surrounding the Laser Station 7061 in Easter Island, 
Chile (A+=AA=0'.75). 
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Figure 18. Geoid Undulation Map Based on the Altimeter Data of Fig. 
17. C.I. = 5 cm (A+=AA=0'.20). 
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STATION DATA N*l T N p n ~  
7061 54 - 3.26 - 3.35 
7068 299 -42.63 -44.81 
7092 127 31.77 29.72 
7096 40 33.36 30.45 
7121 96 8.00 5 .96  

Finally, the  effect of the  Sea Surface Topography is separately 

N T  N A ~  T-NT N ~ ~ T - N T  
- 2.25 -1.01 -1.10 
-42.53 -0.10 -2.28 

32.18 -0.41 -2.46 
34.69 -1.33 -4.24 
10.35 -2.35 -4.39 

discussed in Appendix B. 

STATISTICS NAL T-NT 
Mean Difference -1.04 
RMS Difference 1.30 
Standard Deviation Difference 0 .79  
Minimum Difference -2.35 
Maximum Difference -0.10 

Table 33. Geoid Undulations Computed Using the  Collocation Method 
(NALT), Based on Adjusted GEOS-3/SEASAT Altimeter Data and 
from the OSU86F Field, for the Five Oceanic Laser Stations 
(Units are in m e t e r s ) .  

N p n T - N T  
-2 .89 

2.04 
1.25 

-4.39 
-1.10 

Table 34. Statistics of the Differences NALT-NT and NPOT-NT for t h e  Five 
Oceanic Stations (Units are in meters). 



CHAPTER IX 

SUMMARY AND CONCLUSIONS 

The geoid undulations for 39 laser stations distributed around the 

world have been computed using the classical Stokes’ and Meissl’s 

methods and the new methods of Molodenskii’s and modified Sjoberg’s. 

The high frequency information for the undulation was taken from 

gravity data within a cap of radius 2’ and the low frequency 

information was taken from a set of potential coefficients (OSUSSF). 

using the  eiiipsoidai heights of the laser stations avsibbie frnrn the SL6 

satellite dynamic sohation and the orthometric heights H, available from 

spirit leveling, the values of t h e  geoid undulation N,=h-H w a s  obtained 

and served as a mean for comparisons. 

.. 

The theoretical improvement in the accuracy of the geoid undulation 

computations using the modified Sjoberg’s method w a s  on the order of 

10 c m  (Figure 1) which is well below the noise of the actual data used 

and thus this theoretical improvement was  not realized in practice. No 

method was  clearly better than the others. However, all the four 

methods gave internally consistent results on the order of 30 cm and 

for most of the regions (Australia, Europe, Bermuda, eastern United 

States) there was  an agreement of -60 c m  or better between the  

undulations computed from the four methods and t h e  N T  value (see Table 
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25). For some regions where local high variation of the gravity field 

occurs (e.g. Maui, (stations 7120,7210), Bermuda (station 7067)) t h e  

OSU86F field gives high discrepancies as compared to the  NT values. 

The "worst" situation was  in Maui, where the OSU86F value of the 

undulation differs from the NT value by about 7 m e t e r s  (Table 25). This 

large difference can be explained by the fact that  the OSU86F, being a 

limited expansion to degree 360 cannot represent the very high 

frequency signal of some regions of high variation of the gravity field. 

Such regions are the islands of Maui and Bermuda. The effect of the  

terrain was taken into account for the 17 laser stations in the Western 

United States where the terrain was  considered to be rough. The effect 

of this correction was  on the order of 60 c m  (Table 27). For most of 

the laser stations no terrain corrections and/or height information w a s  

available and thus the computed value of the undulation will be 

systematically low. This is clearly the situation for the two stations in 

Hawaii, where  the difference between the computed undulation8 using 

the four methods and the  NT value is -2 m (see Table 25). The 

ellipsoidal corrections for the four methods were  derived in a uniform 

formulation. Using the OSU86F set up  to degree 36 those corrections 

were  computed and they w e r e  very small in magnitude (maximum: 3 c m  

which is in good agreement with the results obtained in (Rapp, 1981b, 

Table 1)). Consequently, they could be neglected in the total undulation 

computation. A very important correction due to inconsistencies between 

the local terrestrial anomalies and the anomalies implied from the  

geopotential set within the same region of a 2' cap, called the "local 

average correction" was applied to all the computed undulations. The 
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effect of this correction reached 2 m for station 7082 in B e a r  Lake, Utah 

(compare Tables 25,26) and it improved the results with respect to the 

NT value by about 30 c m  for 28 laser stations that were  used for t h e  

comparisons (Tables 28,29). I t  s e e m s  that this correction has to always 

be applied when geoid undulations are computed by a combination of 

terrestrial data and potential coefficient information. Very good 

agreement (-30 cm)  was  achieved between the gravimetric undulations 

using the four methods, the altimetric undulation, the undulation 

obtained from the calibration of SEASAT (Kolenkiewicz, 1987) and the NT 

value for the  station 7067 in Bermuda (see discussion at the end of 

Section 8.4). 

The collocation method using Ohio State adjusted GEOS-3/SEASAT 

altimeter data for five oceanic stations resulted in values of the 

undulation consistent with the Nr value on the order of 70 c m  (Table 

34). 

Using the low of propagation of errors  the accuracy of t h e  

computed geoid undulations for each of the 44 laser stations could be 

computed from the errors in the gravity data surrounding the laser 

station, the accuracy of the given potential coefficients and from various 

models that could represent the omission and discretion errors. These 

accuracies were  not computed individually for each laser station 

although global error models were considered in the error analysis of 

the various methods in Chapter 3. The global RMS undulation error 

from Chapter 3 for the capsize of 2' was computed to be approximately 
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60 cm for all the four methods (Figure 1).  Finally, the accuracies of the 

altimetric undulations for all the five oceanic laser stations using the 

collocation method were computed to be -20 cm. 



CHAPTER X 

RECOMMENDATIONS FOR FUTURE STUDIES 

It is very critical for the future applications of the modified 

S joberg’s method that error degree variance models of the terrestrial 

data which will represent the actual local behavior of the error 

estimates of those data should be developed. The modification of the 

Stokes’ function for the modified S jaberg’s method is essentially based 

on the abqve error models and if the models are properly chosen this 

method will give the smallest possible error in the geoid undulation 

computations. A Monte-Carlo method modeling the empirical error 

covariance function could be suggested. Then, the error degree 

variances can be obtained by integration of the error covariance 

function. 

The anomaly error degree variances implied by a geopotential model 

would certainly be different if a full variance-covariance matrix of the 

potential coefficients could be available. This would again influence the 

modified SjSberg’s method but the exact effect was not tested. 

Another important investigation for precise undulation computations 

can be the effect of the zero and first degree term of the error anomaly 

degree variances of the terrestrial data and the zero degree term of the 
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error degree variances of the potential coefficient data (ao, u1 and 6Co 

respectively, following the notation of the introduction) on the  

computation of the W4" coefficients in the modified SjGberg's method. 

Although the theory was  given by equation (2.106) and @.lo?), for the 

numerical applications we assumed ao=6Co=al=0. I t  s e e m s  that the 

stability of the solution (2.108) will be increased by admitting zero and 

first  degree t e r m  for the above error degree variances, although this 

was not checked. The local average correction should be more 

extensively checked using actual geoid computations. G r a v i m e t r i c  geoid 

undulation computations in Doppler or GPS stations including and 

excluding the zero order correction could give a definite answer 

whether this correction should be applied or not. However, the answer 

reached here is that this correction has to always be applied. 

Finally, the collocation method of computing undulations using the 

randomly distributed point gravity data surrounding the laser stations 

could be applied and the results could be compared with t h e  ones given 

here using the integral formulas. 
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APPENDIX A 

Proof of equations (2.1051, (2.106) and (2.107): 

The expression of the global mean square error combining equations 

(2.98), (2.99), (2.100), (2.101) and (2,102) is: 

M Q 

( A .  l) + E, Q:,~c, + 1 n2 r 1 n "n j n=n+l 

For convenience, let us use the substitutions 

Q4n = Qn ] (A.2) - c  ( A . 3 )  
X4n = Xn 

W 4  n = wn 

The minimization of 6Nf expressed in (2,103) i s  equivalent to the 

conditions 

R - -  
27 

2 /=a \ 

4L = 0, k=0,1, . . . ,ii 

where, from (A.l) and (A,2), ( A . 3 ) :  

Denoting with E l ,  Ea, C3, E4, C5 and C6 the summations in (A.5) and 

taking into account eq. (2.96), we have: 
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Thus, condition (A.4) can be written 

Using the obvious relationships 

where 6kn is the Kroenecker's 6: 6kn = 

partials (A.7) from (A.61, one by one: 

k2n we evaluate the k=n' 
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( A .  15) 

( A .  16) 
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( A .  18) 

( A .  19) 

Using condition' ( A . 7 )  and adding (A.17) - (A.22) ,  we obtain 

( A .  22) 

(D 

+ c  n=nT+l r=o f: 9 w,~,~~~~(c,,+c~)] 
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The third term of the left hand side of eq. (A.23) can be written: 

(A. 25) 

It is now obvious that equations (A.25) are equivalent to the linear 

system 
- 
E aktWt = hk k=0,1, . . . ,ii 

t=o (A. 26) 



m 
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( A .  27) 

+ Xlk@k - Qlk(@k+dCk) (A. 28) 

Equations (A.26), (A.27) and (A.28) after the substitutions (A.2) and (A.3) 

give immediately equations (2.105), (2.16) and (2,107) which were to be proven. 



APPENDIX B 

-.- 

/--- h s  

The deviation of the sea surface from the geoid, known as the sea 

- Surface Topography (SST) plays an important role when the gravimetric 

or the altimetric undulation are compared to the ellipsoidal minus 

orthometric value of the undulation of laser stations on islands. From 

Figure B1 we can see that the orthometric height (H) of a laser station. 

H 

- 
'.- SEA SURFACE 

-----\ 

-2 E L L I  PSO I D  

Figure B1.  Role of the Sea Surface Topography (C) for Undulation 
Computations in Oceanic Laser Stations. 

the SST (0, the geoid undulation (N') and the ellipsoidal height (h)  of 

the laser station satisfy t h e  equation: 
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h = H + ( + N '  (B.  1) 

In writing equation (B. l )  the basic assumption that has been made is 

that the vertical datum to which the orthometric height of the laser 

station refers is assumed to coincide with the  mean sea surface as is 

realized by the  altimetric observations. From (B.l)  t h e  value of the  

undulation will be 

N' = (h-H) - ( (B .2 )  

From Chapter 4, equation (4.2), and from equation (B.2) w e  take: 

N' = NT - ( (B.3) 

Thus, from the value of the undulation NT computed in Chapter  4, t h e  

value of the SST has to be subtracted, so that the undulation N' 

obtained can be compared to the gravimetric undulation of the laser 

station. We thus assume that the gravimetric undulations of the laser 

stations are free from the effect of SST. This is not rigorously true, 

since the SST influences the gravity anomaly data which are used to 

compute the gravimetric undulations, but this effect can be considered 

negligible (Rapp, 1985b). 

Four different SST harmonic coefficient sets described in (Rapp, 

1985b, Appendix B) were used to compute (. These sets w e r e  computed 

by Engelis (private communication, 1987) similarly as in (Engelis, 2985b) 

and they are as follows: 

Set No. 1: SST harmonic coefficie.nts complete to degree and order 36. 

The PGS3041 potential coefficient set, an intermediate set for 

the GEM-T1 (Marsh et al., 1986) has been used to realize the  

geoid up to degree 36. The high frequencies from degrees 



Set No. 2: 

Set No. 3: 

Set No. 4: 

37 to 180 were removed from the SEASAT sea surface heights 

by using the potential coefficients of the solution described 

in (Rapp, 1981b). 

SST harmonic coefficients complete to degree and order 36; 

the PGS3041 set has been used up to degree 36. 

SST harmonic coefficients complete to degree and order 10, 

based on the Levitus (1982) data. 

A set of 64800 l ' x l "  global values of SST based on Levitus 

data. 

The computation of the SST at the laser stations using Sets No. 1-3 was 

done as follows: 

n n  

n=O m=O 
= (cnmcosmh + d,,sinmh)P,,(sin6) (J3.4) 

where c,,, d,, are the SST harmonic coefficients and 6 is the  geocentric 

latitude of the  laser station. The degree of expansion M w a s  taken 6 

for all t h e  three sets. 

The computation of the SST at the laser stations using the Set No. 4 

w a s  done using the four l*x l*  closest points to the laser station in a 

bi-linear interpolation with respect to the latitude and longitude of the 

laser station. 

The results of the SST computations using all the four SST sets 

described above are shown in Table B 1  for 5 laser stations. The 

number and the name of the laser stations appear in t h e  first two 

columns; the location of the stations appears in the third column; finally 
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NUMBER NAME OCCUPATION s1 S2 s3 
7210 MAULAS Maui, H a w a i i  0.81 0.88 0.44 
7067 BDILAS Bermuda Island 0.55 0.61 0.07 
7838 SHOLAS Simosato, Japan 0.93 0.86 0.43 
7090 YARLAS Yarragadee, Australia -0.10 -0.12 0.11 
7943 ORRLAS Orroral Valey, Australia 0.16 0.10 -0.03 

correspondingly) is shown in columns four-seven. The units for the 

s4 
0.32 
0.09 
0.22  
0.00 
0.00 

SST is meters. 

Table B1. Sea Surface Topography in meters for 5 Laser Stations Using 
the Sets No. 1-4. 

For the above 'five laser stations the gravimetric undulations are  

available using four different methods (See Table 21). W e  select here 

the undulations computed using the modified S j6berg's method to 

represent the gravimetric undulation of stations 7210-7943 of Table B 1 .  

'These undulations are shown on the second column of Table B2; then, 

the NT value of the undulation computed from (4.2) is shown in the 

third column; the corrected values of N T  through equation (B.3) using 

the above four SST sets (N'=NT-() is shown in columns four-seven. 

According to our discussion above the undulations of column two should 

be compatible only with the values of the undulations of columns 

four-seven of Table B2. 

The differences N-NT and N-N' for the four SST sets are shown on 

Table B3; Table 37; the corresponded statistics of these differences are  

shown on Table B4. It can be seen from Table B4 that the mean and 

the RMS differences w e r e  decreased in all cases that the SST correction 
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NUMBER N 
7210 18.66 
7067 -31.97 
7838 38.63 
7090 -24.88 
7943 18.85 
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N* N‘ (Sl) N‘ (S2) N’ (S3) N’ (S4) 
20.49 19.68 19.61 20.05 20.17 
-31.81 -32.36 -32.42 -31.88 -31.90 
39.97 39.04 39.11 39.54 39.75 
-24.28 -24.18 -24.16 -24.39 -24.28 
20.38 20.22 20.28 20.41 20.38 

Table B2. Gravimetric Value of the Undulation (N), NT (Uncorrected for 
SST) and N‘=NT (Corrected for SST Using the Sets No. 1-4) 
for 5 Laser Stations in meters. 

7067 -0.16 0.39 0.45 -0.09 -0.07 
7838 -1.34 -0.41 -0.48 -0.91 -1.12 
7090 -0.60 -0.70 -0.72 -0.49 -0.60 

* 7943 -1.53 -1.37 -1.43 -1.56 -1.53 , 

was  applied to the NT values as compared to the  mean and the RMS 

differences with the uncorrected NT values. The standard deviation of 

the differences remained essentially the s a m e  when the first two SST 

sets w e r e  used? and slightly decreased (-0.05 m) when t h e  lest, t.wo SST 

sets w e r e  used. 

The accuracy of the SST computed using the four sets as above is 

thought to be approximately *20 c m  (Rapp, 1985b, p. 106). Considering 

this accuracy estimate is true, w e  can say that the inclusion of the SST 

effect clearly improved the individual and overall comparisons of the 

gravimetric undulations with the (corrected) NT value. 

Table B3. Differences N-NT, N-N’(Sl), N-N’(SZ), N-N’(S3) and N-N’(S4) in 
m e t e r s  (see Table 36) for the 5 Laser Stations. 

NUMBER I N-NT IN-N’(S1) IN-N’(S2) IN-N‘(S3) IN-N‘(S4) 
7210 I -1.83 1 -1.02 I -0.95 I -1.39 I -1.51 
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RMS Difference 1.25 0.86 
Standard Dev D i f f  0.61 0.60 
Minimum Difference -1.83 -1.37 

.Maximum Difference -0.16 0.39 

Table B4. Statistics of the Differences N-NT, N-N’(Sl), N-N’(SZ), N-N‘(S3) 
and N-N‘(S4) in meters (see Table 36) for the 5 Laser 
Stations. 

0.88 1.04 1.12 
0.61 0.54 0.56 
-1.43 -1.56 -1.53 
0.45 -0.09 -0.07 

STATISTICS I N-Nr IN-N’(S1) IN-N’(S2) IN-N‘(S3) IN-N’(S4) 
Mean Difference I -1.09 I -0.62 I -0.63 I -0.89 I -0.97 

Although the sample of the 5 laser stations used here is small, the 

systematic improvement of t h e  results when the SST was considered is 

clear. We thus can say that the SST effect has  to always be taken into 

account when geoid undulations at an accuracy level of 50 cm or better 

are to be computed. 


